{"title":"FLEPS 2020 Table of contents","authors":"","doi":"10.1109/fleps49123.2020.9239483","DOIUrl":"https://doi.org/10.1109/fleps49123.2020.9239483","url":null,"abstract":"","PeriodicalId":101496,"journal":{"name":"2020 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121117220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Pouryazdan, Júlio C. Costa, Pasindu Lugoda, R. Prance, H. Prance, N. Münzenrieder
{"title":"Flexible Micro-Scale Sensor Array for Non-Contact Electric Potential Imaging","authors":"A. Pouryazdan, Júlio C. Costa, Pasindu Lugoda, R. Prance, H. Prance, N. Münzenrieder","doi":"10.1109/FLEPS49123.2020.9239593","DOIUrl":"https://doi.org/10.1109/FLEPS49123.2020.9239593","url":null,"abstract":"Non-contact imaging of electric potentials with micro-metre resolution can provide relevant insights in material characterisation, electrostatic charge imaging and bio-sensing applications. However, scanning electric potential microscopes have been confined to rigid and single-probe devices, making them slow, prone to mechanical damage and complex to fabricate. In this work, we present a novel 5-element flexible array of electric potential probes with spatial resolution down to $20 mu mathrm{m}$ which reduces the scanning time by a factor of 5 when compared to a single probe device. This was achieved by combining flexible thin-film probes for active guarding and shielding with state-of-the art discrete conditioning circuits. The potential of this approach is showcased by using the fabricated array to image latent fingerprints deposited on an insulating surface by contact electrification. This is the first example of a micro-scale array of electric potential sensors.","PeriodicalId":101496,"journal":{"name":"2020 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129552369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Fairclough, C. Giannetti, Isabel Wagner, H. Shakeel
{"title":"Colorimetric sensor for pH monitoring of liquid samples using bubble wrap and mobile phone camera","authors":"S. Fairclough, C. Giannetti, Isabel Wagner, H. Shakeel","doi":"10.1109/FLEPS49123.2020.9239445","DOIUrl":"https://doi.org/10.1109/FLEPS49123.2020.9239445","url":null,"abstract":"In this study, we utilized low cost and easily available bubble wrap, homemade indicator solution (cabbage juice), and custom built mobile app based on color detection to find pH values of common liquid samples. We studied two common color definition models i.e. the Red, Green, Blue (RGB) and Hue, Saturation, and Light (HSL) to extract pH values of eight different liquids upon color change after reaction with cabbage juice. Our results show that the HSL based color definition model performs better than the RGB model for both calibration liquids (vinegar with pH=3 and bicarbonate soda pH=9) and eight target liquids with the pH range spanning from 2 to 13.","PeriodicalId":101496,"journal":{"name":"2020 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)","volume":"134 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133949591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Laxmeesha Somappa, Shahid Malik, Meraj Ahmad, Khan Mohammad Ehshan, Aatha Mohin Shaikh, Khan Mohammad Anas, S. Sonkusale, M. Baghini
{"title":"A 3D Printed Robotic Finger with Embedded Tactile Pressure and Strain Sensor","authors":"Laxmeesha Somappa, Shahid Malik, Meraj Ahmad, Khan Mohammad Ehshan, Aatha Mohin Shaikh, Khan Mohammad Anas, S. Sonkusale, M. Baghini","doi":"10.1109/FLEPS49123.2020.9239490","DOIUrl":"https://doi.org/10.1109/FLEPS49123.2020.9239490","url":null,"abstract":"In this paper a simple and low-cost 3D printed robotic finger is presented. The 3D printed finger is embedded with a low-cost flexible piezoresistive polymer for sensing pressure and a thread-based carbon coated strain sensor for tracking the bending of the finger. The fingers are 3D printed with fused deposition modeling (FDM) printers using polymer composites thereby enabling low cost, high speed and simplicity. Design of a single such 3D printed finger is discussed and results are shown for the embedded pressure and strain sensors using a simple highly linear analog readout circuit.","PeriodicalId":101496,"journal":{"name":"2020 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134253599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Synthesis of Multi-functional ZnO Nanomaterials on Flexible Substrates for Flexible Electronics","authors":"A. Dahiya, R. Dahiya","doi":"10.1109/FLEPS49123.2020.9239485","DOIUrl":"https://doi.org/10.1109/FLEPS49123.2020.9239485","url":null,"abstract":"Low-temperature processable hybrid organic/inorganic based electronic devices, such as field-effect transistors (FETs), micro/nano energy generators, photodetectors, etc. offer practical solutions towards realizing low-cost, flexible self-powered autonomous systems. This work presents the method for ‘direct’ integration of inorganic ZnO nanostructures onto flexible polymeric substrates by growing directly the nanowires (NWs) using hydrothermal growth process. In addition, the ‘indirect’ integration is demonstrated by transferring high temperature grown ZnO nanosheets (NSs) using mechanical shear force alignment technique. The potential of each integration approaches has been demonstrated by fabricating organic / inorganic hybrid electronic devices over flexible polymeric substrates.","PeriodicalId":101496,"journal":{"name":"2020 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)","volume":"144 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122859907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Panahi, S. Masihi, D. Maddipatla, A. K. Bose, Sajjad Hajian, A. Hanson, V. Palaniappan, B. B. Narakathu, B. Bazuin, M. Atashbar
{"title":"Investigation of Temperature Effect on the Porosity of a Fabric Based Porous Capacitive Pressure Sensor","authors":"M. Panahi, S. Masihi, D. Maddipatla, A. K. Bose, Sajjad Hajian, A. Hanson, V. Palaniappan, B. B. Narakathu, B. Bazuin, M. Atashbar","doi":"10.1109/FLEPS49123.2020.9239439","DOIUrl":"https://doi.org/10.1109/FLEPS49123.2020.9239439","url":null,"abstract":"A fabric based porous polydimethylsiloxane (PDMS) pressure sensor was developed and the effect of curing temperature on the porosity as well as the sensitivity was investigated. Three different porous PDMS dielectric layers (D1, D2 and D3) were prepared by curing a mixture of PDMS, sodium hydrogen bicarbonate (NaHCO3), and nitric acid (HNO3) at 110 $^{circ}C$, 140$^{circ}C$ and 170$^{circ}C$, respectively. The top and bottom electrodes of the pressure sensor were fabricated by screen printing silver (Ag) on a thermoplastic polyurethane (TPU) film. The screen-printed Ag-TPU film was permanently attached to a fabric using heat lamination process. Three pressure sensors, PS1, PS2 and PS3 were assembled by sandwiching the porous dielectric layers D1, D2 and D3 between the top and bottom electrodes, respectively. An average pore size of $411 mu mathrm{m}, 496 mu mathrm{m}$, and $502 mu mathrm{m}$ was measured for D1, D2 and D3, respectively. A relative capacitance change of $sim 100$%, $sim$ 323%, and $sim$ 485% was obtained for the pressure sensors PS1, PS2, PS3, respectively, for varying applied pressures ranging from 0 to 1000 kPa. The effect of curing temperatures on the thickness as well as the dielectric constant of the porous PDMS layer, which in turn changes the sensitivity of the pressure sensors, was investigated and is presented in this paper.","PeriodicalId":101496,"journal":{"name":"2020 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130252130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. Palaniappan, D. Maddipatla, M. Panahi, S. Masihi, A. K. Bose, X. Zhang, Sajjad Hajian, B. B. Narakathu, B. Bazuin, M. Atashbar
{"title":"Highly Sensitive and Flexible M-Tooth Based Hybrid Micro-Structured Capacitive Pressure Sensor","authors":"V. Palaniappan, D. Maddipatla, M. Panahi, S. Masihi, A. K. Bose, X. Zhang, Sajjad Hajian, B. B. Narakathu, B. Bazuin, M. Atashbar","doi":"10.1109/FLEPS49123.2020.9239447","DOIUrl":"https://doi.org/10.1109/FLEPS49123.2020.9239447","url":null,"abstract":"A novel flexible capacitive pressure sensor based on hybrid micro-structured (HM) polydimethylsiloxane (PDMS) dielectric layer was developed. The HM-PDMS with M-tooth structured patterns was fabricated using laser engraved acrylic master mold. The top and bottom electrodes were fabricated by depositing silver (Ag) on flexible (polyethylene terephthalate) PET substrate using additive screen printing. The pressure sensor was assembled by sandwiching two HMPDMS based dielectric layer between the top and bottom electrodes. The performance of HM-PDMS based pressure sensor was demonstrated by subjecting the sensor to varying applied pressures ranging from 0 to 100 Pa, and 1 kPa to 10 kPa. A sensitivity of 0.14% Pa$^{-1}$, and 0.02% Pa$^{-1}$ was obtained for the fabricated pressure sensor for the pressure ranges 0-100 Pa, and 1 to 10 kPa, respectively.","PeriodicalId":101496,"journal":{"name":"2020 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126411820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marc Martínez-Estrada, R. Fernández-García, I. Gil
{"title":"A wearable system to detect urine leakage based on a textile sensor.","authors":"Marc Martínez-Estrada, R. Fernández-García, I. Gil","doi":"10.1109/FLEPS49123.2020.9239554","DOIUrl":"https://doi.org/10.1109/FLEPS49123.2020.9239554","url":null,"abstract":"In this work, a wearable system to detect urine leakage based on a textile sensor is proposed. The system consists of a capacitive sensor embroidered with a conductive yarn in a cotton/polyester substrate. A microcontroller (MCU) with a wireless module for signal acquisition and a smartphone for monitoring complete the overall system. The capacitive sensor behaviour was tested in a climatic chamber between 30 % and 80% of relative humidity (RH) with a LCR meter and charge/discharge method directly connected to the MCU. The results show that the proposed system is able to detect urine leakage even though when the patient wears a diaper. The functionally allows to develop a real time monitoring system which can help nursing and medical assistants to take care of elderly and disabled people and improve the quality of life of these patients.","PeriodicalId":101496,"journal":{"name":"2020 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)","volume":"115 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131466966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Flexible and Wearable Ultrasonic Sensors and Method for Classifying Individual Finger Flexions","authors":"A. J. Fernandes, Y. Ono, E. Ukwatta","doi":"10.1109/FLEPS49123.2020.9239436","DOIUrl":"https://doi.org/10.1109/FLEPS49123.2020.9239436","url":null,"abstract":"Ultrasound imaging technology has recently been proven to achieve higher classification accuracies than surface electromyography when predicting hand motions. However, typical designs involve a large linear array ultrasonic probe or bulky multichannel ultrasonic transducers. In this study, we constructed wearable ultrasonic sensors (WUS) using 110$-mu$m thick flexible piezoelectric polymer film for an ergonomic strategy for prosthetic and human machine interface applications. We attached the three WUSs on the forearm of a healthy subject, 5 cm away from the wrist, to monitor the tissue motions associated with the finger flexions. An experiment to predict 100 ms time intervals of individual finger flexions was investigated using novel feature extraction methods involving the discrete wavelet transform. We achieved an accuracy of 92.5±7.6% for classification of finger flexions using a multilayer perceptron with a hidden layer of 15 nodes. The F1 score for classifying the five fingers ranged between 86-99% across all fingers using uniformly distributed class sample sizes. The results strongly support the utility of the ergonomic WUS system for continuously predicting individual finger flexions in prosthetic and human machine interface applications.","PeriodicalId":101496,"journal":{"name":"2020 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133837345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A low-cost, disposable GO-CS screen printed carbon electrode for electrochemical detection of tyrosine","authors":"Saoirse Dervin, Ammara Ejaz, R. Dahiya","doi":"10.1109/FLEPS49123.2020.9239514","DOIUrl":"https://doi.org/10.1109/FLEPS49123.2020.9239514","url":null,"abstract":"A low-cost, sustainable and sensitive method for the continuous detection and quantification of Tyrosine (Tyr), a valuable metabolic biomarker, in biological fluids would present a valuable platform to aid patients and medical personnel in dietary management and the diagnosis and monitoring of metabolic and neurodegenerative disease. This work, therefore, presents a facile approach for the development of a graphene oxide (GO) - chitosan (CS) screen-printed carbon electrode (SPCE) (GO-CS/SPCE) on a flexible polyvinyl chloride (PVC) substrate, for the electrochemical detection of Tyr. The low-cost, disposable sensor was achieved by successfully immobilizing a homogenous GO-CS film at the surface of the SPCE via a simple ultrasound-assisted chemical reaction strategy. GO-CS was chosen as the sensitive nanocomposite film due to excellent electrochemical sensing properties, as well as the cost-effective, disposable and biocompatible nature of these nanomaterials. The GO-CS/SPCE demonstrated a wide linear range of 30-500 $mu M$ with a sensitivity of 0.03 $mu Amu M^{-1}$ and good reproducibility, highlighting the potential of GO-CS/SPCE as a low-cost, disposable and practical sensor for Tyr point of care (POC) testing.","PeriodicalId":101496,"journal":{"name":"2020 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)","volume":"352 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134289886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}