{"title":"Advances of cassava starch-based composites in novel and conventional drug delivery systems: a state-of-the-art review","authors":"Sanjoy Das, Malay K. Das, Taison Jamatia, Bireswar Bhattacharya, Rishav Mazumder, Pradip Kumar Yadav, Nayan Ranjan Ghose Bishwas, Trinayan Deka, Dhritiman Roy, Bibek Sinha, Biplajit Das, Ichu Daule, Kishan Paul, Ankita Roy, Ankita Choudhury, Pinkan Sadhukhan, Dibyojyoti Sarmah, Dhritiman Bhargab, Bani Kumar Jana, Dubom Tayeng, Nilayan Guha, Bhrigumani Kalita and Subhajit Mandal","doi":"10.1039/D3PM00008G","DOIUrl":"https://doi.org/10.1039/D3PM00008G","url":null,"abstract":"<p >Starch has emerged as a new attractive biopolymer for use in pharmaceutical applications, owing to its distinctive physical, chemical and functional properties. This biopolymer has several potential advantages: it is biocompatible, low cost, non-toxic and easily isolated from plant sources. In the pharmaceutical field, starch is used as a raw material for developing various drug delivery platforms. Generally, cassava starch (tapioca) is obtained from the swollen roots of the perennial shrub <em>Manihot esculenta</em> and it contains a low amount of amylose in contrast to other varieties of starches. Because of this reason, cassava starch exhibits various prime benefits, including a low gelatinization temperature, higher swelling power and a relatively high viscosity paste, making it a preferable excipient for pharmaceutical applications. However, cassava starches in their native form are not effective for many applications because of their inefficiency in handling various processing requirements like high temperature and diverse pH. Their applicability can be enhanced by starch modification. These functional starches have demonstrated outstanding prospects as primary excipients in many pharmaceutical formulations. In this article, we discuss the potential application of cassava starches in the pharmaceutical and biomedical fields, along with the toxicity assessment of modified cassava starches.</p>","PeriodicalId":101141,"journal":{"name":"RSC Pharmaceutics","volume":" 2","pages":" 182-203"},"PeriodicalIF":0.0,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/pm/d3pm00008g?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141424765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Phenylboronic acid-derived nanovectors for gene/drug delivery by targeting cell surface glycans","authors":"Venkanna Muripiti, Venkatesh Ravula, Srinivas Batthula, Janardhan Banothu and Ramesh Gondru","doi":"10.1039/D4PM00005F","DOIUrl":"https://doi.org/10.1039/D4PM00005F","url":null,"abstract":"<p >Gene mutations within cells can lead to cancer, a global health challenge affecting millions worldwide. In combating cancer, various treatments such as surgery, radiotherapy, and chemotherapy have been employed. However, the distinct underlying genetic abnormalities causing the cancer are sometimes not addressed by conventional treatments. Adding to these obstacles, targeted therapy is another continuing challenge in cancer treatment. According to recent reports, phenylboronic acid (PBA)-decorated nanoparticles efficiently transfer genes to the intended location due to their strong affinity for sialic acid (SA), which is typically overexpressed in cancerous cells. These PBA-decorated nanoparticles may connect to cancer cells specifically, which enables them to target and deliver the cargo to cancer cells. Therefore, the present review concentrates on the role of PBA-decorated nanoparticles in gene/drug delivery. It includes a discussion on various boronic acid (BA)-conjugated macromolecules. We begin with an exploration of the chemistry underlying BA and its utility in effective delivery. Furthermore, the review elaborates on its application as a targeting ligand, providing a promising avenue for more precise and effective cancer treatment strategies.</p>","PeriodicalId":101141,"journal":{"name":"RSC Pharmaceutics","volume":" 3","pages":" 403-411"},"PeriodicalIF":0.0,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/pm/d4pm00005f?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141980148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Md Monir Hossain, Amir Hamza, Shakil Ahmed Polash, Mehedi Hasan Tushar, Masato Takikawa, Anuj Bhowmik Piash, Chaitali Dekiwadia, Tanushree Saha, Shinji Takeoka and Satya Ranjan Sarker
{"title":"Green synthesis of silver nanoparticles using Phyllanthus emblica extract: investigation of antibacterial activity and biocompatibility in vivo†","authors":"Md Monir Hossain, Amir Hamza, Shakil Ahmed Polash, Mehedi Hasan Tushar, Masato Takikawa, Anuj Bhowmik Piash, Chaitali Dekiwadia, Tanushree Saha, Shinji Takeoka and Satya Ranjan Sarker","doi":"10.1039/D3PM00077J","DOIUrl":"https://doi.org/10.1039/D3PM00077J","url":null,"abstract":"<p >The application of nanotherapeutics is being considered as one of the most sought-after strategies to combat the threat posed by drug resistant bacteria. One promising type of nanotherapeutic is biogenic silver nanoparticles (bAgNPs) generated through exploiting the reducing potential of plant extracts. Herein, bAgNPs were synthesized at pH 7.4 (bAgNPs) and pH 10 (bAgNPs@pH) through green chemistry approaches using an extract of <em>Phyllanthus emblica</em> fruit as a source of reducing agent. The physicochemical properties, antibacterial potential, and biocompatibility of the as-synthesized bAgNPs were determined. The average size of bAgNPs and bAgNPs@pH was 15.3 and 20.1 nm, respectively, and both types of nanoparticles were negatively charged (<em>i.e.</em>, ∼−25 mV). The as-synthesized bAgNPs exhibited excellent antibacterial activity against different bacterial strains such as <em>Bacillus subtilis</em> RBW, <em>Escherichia coli</em> DH5a, <em>Salmonella typhi</em>, <em>Hafnia alvei</em>, enteropathogenic <em>E. coli</em>, <em>Vibrio cholerae</em>, and <em>Staphylococcus aureus</em>. The most effective antibacterial activity of bAgNPs and bAgNPs@pH was observed against <em>Hafnia alvei</em>, a Gram-negative bacterium, with a zone of inhibition (ZOI) of ∼24 and 26 mm in diameter, respectively. The nanoparticles exhibited antibacterial activity through damaging the bacterial cell wall, oxidizing the membrane fatty acids, and interacting with cellular macromolecules to bring about bacterial death. Furthermore, bAgNPs showed excellent hemocompatibility against human red blood cells, and there was no significant toxicity observed in rat serum ALT, AST, γ-GT, and creatinine levels. Thus, bAgNPs synthesized using <em>Phyllanthus emblica</em> fruit extract hold great promise as nanotherapeutics to combat a broad spectrum of pathogenic bacteria. Future directions may involve further exploration of the potential applications of biogenic silver nanoparticles in clinical settings, including studies on long-term efficacy, extensive <em>in vivo</em> toxicity profiles, and scalable production methods for clinical use.</p>","PeriodicalId":101141,"journal":{"name":"RSC Pharmaceutics","volume":" 2","pages":" 245-258"},"PeriodicalIF":0.0,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/pm/d3pm00077j?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141424746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Priyanka Agarwal, Darren Svirskis and Michél K. Nieuwoudt
{"title":"Thermodynamic and spectroscopic evaluation of the eutectic mixture of myristic acid and the local anaesthetics, bupivacaine and ropivacaine","authors":"Priyanka Agarwal, Darren Svirskis and Michél K. Nieuwoudt","doi":"10.1039/D3PM00082F","DOIUrl":"https://doi.org/10.1039/D3PM00082F","url":null,"abstract":"<p >Local anaesthetics provide an opioid-sparing alternative for pain management; however, their short-lived analgesic effect necessitates repeat or sustained drug delivery to the target site. Improving drug loading and enhancing physical stability is a challenge when formulating sustained release devices. Here, myristic acid's interaction with bupivacaine and ropivacaine was studied to evaluate whether eutectic formation between these drugs and myristic acid can similarly influence drug crystallization and increase drug loading in poly ethylene-<em>co</em>-vinyl acetate (EVA). Binary mixtures of ropivacaine and bupivacaine with myristic acid were thermodynamically evaluated by differential scanning calorimetry. Fourier transfer infrared (FTIR) spectra of bupivacaine or ropivacaine and myristic acid binary mixtures at different ratios were obtained and synchronous and asynchronous two-dimensional correlation spectroscopy (2DCOS) maps analysed. Stabilizing effects were observed visually by preparing EVA films containing each drug with and without myristic acid. Thermodynamic and spectroscopic studies suggested that both bupivacaine and ropivacaine form a eutectic with myristic acid at the molar ratio of 2 : 3 and 1 : 3, respectively. 2DCOS FTIR analysis revealed hydrogen bonding between the carbonyl and hydroxyl groups of myristic acid and amide carbonyl group of bupivacaine and ropivacaine, respectively, when myristic acid was present in excess. Furthermore, myristic acid transiently stabilized both bupivacaine and ropivacaine in EVA matrices, but crystallization was evident by the 6-month timepoint. Myristic acid forms a eutectic with both bupivacaine and ropivacaine due to hydrogen bonding interaction. Eutectic formation inhibits crystallization and stabilizes bupivacaine and ropivacaine in EVA matrices, for 1 month, however crystallization of both local anaesthetics was evident after 6-months.</p>","PeriodicalId":101141,"journal":{"name":"RSC Pharmaceutics","volume":" 2","pages":" 296-304"},"PeriodicalIF":0.0,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/pm/d3pm00082f?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141424750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development of polyethyleneimine cross-linked fucoidan nanoparticles as delivery systems for improved anticancer efficiency of cytarabine in breast adenocarcinoma cell lines†","authors":"Deepa Geethakumari, Santhini Pulikkal Veettil, Sivakumar Krishnankutty Nair Chandrika, Anoop Bhaskaran Sathyabhama, Rojin Joseph, Shibin Sobhanam Padmini, Jisha V. Somasekharan and Sajeevan Thavarool Puthiyedathu","doi":"10.1039/D3PM00078H","DOIUrl":"https://doi.org/10.1039/D3PM00078H","url":null,"abstract":"<p >Cytarabine, generally used for the treatment of haematological malignancies, has minimal activity in solid tumours. The present work focuses on the evaluation of the cytotoxic efficiency of cytarabine in MCF-7 cell lines with the aid of fucoidan nanoparticles as drug delivery systems. Polyethyleneimine (PEI) crosslinked fucoidan nanoparticles were synthesised by polyelectrolyte complexation and were characterised by FTIR and <small><sup>1</sup></small>H NMR. TEM analysis revealed cytarabine-loaded fucoidan nanoparticles (CFNPs) with a size of less than 40 nm. <em>In vitro</em> release kinetics studies showed that the release of cytarabine (82.17 ± 1.24%) from CFNPs was higher at pH 6.4. Molecular simulation studies revealed that fucoidan–cytarabine binding is mainly facilitated by hydrogen bonds. Internalisation of fucoidan nanoparticles by MCF-7 cells was tracked using the fluorophore, SQ 650. Cell viability studies showed improved cytotoxicity in CFNP-treated MCF-7 cell lines compared to free cytarabine. Quantitative real-time PCR showed upregulation of the expression of apoptotic genes, <em>bax</em>, <em>cyt c</em> and <em>cas 9</em> in cells treated with CFNPs. Flow cytometry using Annexin V/PI displayed an increased percentage of apoptotic cells on treatment with CFNPs compared to cytarabine alone. The result of this study shows that the cytotoxic efficiency of cytarabine in MCF-7 cells can be enhanced using fucoidan nanoparticles as delivery systems.</p>","PeriodicalId":101141,"journal":{"name":"RSC Pharmaceutics","volume":" 2","pages":" 305-316"},"PeriodicalIF":0.0,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/pm/d3pm00078h?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141424751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nildhara Parsana, Hiral Ukani, Dharmveer Singh Chauhan, Omar El Seoud, Sanjay Mehra, Arvind Kumar, Naina Raje and Naved Malek
{"title":"Biocompatible, injectable and self-healable MOF-based anti-freezing eutectogels for higher encapsulation and sustained release of the anticancer drug curcumin†","authors":"Nildhara Parsana, Hiral Ukani, Dharmveer Singh Chauhan, Omar El Seoud, Sanjay Mehra, Arvind Kumar, Naina Raje and Naved Malek","doi":"10.1039/D3PM00088E","DOIUrl":"https://doi.org/10.1039/D3PM00088E","url":null,"abstract":"<p >Inspired by the antifreeze proteins found in the blood of <em>Trematomus borchgrevtnki</em>, a fish from the Antarctic Ocean, herein we developed metal organic framework (MOF) based ‘waterless’ eutectogels with impermeable nano-domains as antifreeze “soft” materials. The eutectogels were successfully developed through dissolving sodium alginate and ZIF-8, a known MOF, within deep eutectic solvents (DESs) prepared from the environmentally benign biocompatible cryoprotectants glucose and fructose as the HBDs and choline chloride as the HBA. The structural integrity of ZIF-8 and DES was preserved during the eutectogel formation and so also their properties. The eutectogels showcased notable attributes, including antifreeze properties, self-healing capabilities, injectability, adhesiveness, substantial drug loading capacity (∼75 000 and ∼71 000 fold higher curcumin than in water) and efficient sustained drug release behaviour. Moreover, the eutectogel also demonstrated antibacterial and antioxidant attributes, along with hemocompatibility evidenced by hemolysis levels below 2%. Furthermore, the eutectogel exhibited biocompatibility even at very high concentrations (50 mg mL<small><sup>−1</sup></small>). Leveraging on its robust colloidal forces and an environmentally benign composition, the studied eutectogel proves its suitability not just for pharmaceutical applications but also for high-performance applications that prioritize ecological sustainability.</p>","PeriodicalId":101141,"journal":{"name":"RSC Pharmaceutics","volume":" 2","pages":" 317-332"},"PeriodicalIF":0.0,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/pm/d3pm00088e?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141424752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shivakumar Naik, Dinesha Puttachari, Vanishree A. L., Udayakumar D., Varsha Prakash Shetty, Chaitra Prabhu and Vijaya Kumar Deekshit
{"title":"Synthesis and biological evaluation of novel hybrid compounds bearing pyrazine and 1,2,4-triazole analogues as potent antitubercular agents†","authors":"Shivakumar Naik, Dinesha Puttachari, Vanishree A. L., Udayakumar D., Varsha Prakash Shetty, Chaitra Prabhu and Vijaya Kumar Deekshit","doi":"10.1039/D3PM00054K","DOIUrl":"https://doi.org/10.1039/D3PM00054K","url":null,"abstract":"<p >In this study, we elucidate the conceptualization and synthesis of hybrid compounds (<strong>T1–T18</strong>) amalgamating pyrazine and 1,2,4-triazole scaffolds. A total of eighteen compounds were screened <em>in vitro</em> for their efficacy against the <em>Mycobacterium tuberculosis</em> H37Rv strain <em>via</em> the MABA assay. The results revealed that eight compounds (<strong>T4</strong>, <strong>T5</strong>, <strong>T6</strong>, <strong>T11</strong>, <strong>T14</strong>, <strong>T15</strong>, <strong>T16</strong>, and <strong>T18</strong>) manifested noteworthy activity against <em>Mtb</em>, with minimum inhibitory concentration (MIC) values of ≤21.25 μM. Furthermore, we also examined these compounds for their antibacterial and antifungal properties against various strains. Compounds <strong>T4</strong>, <strong>T9</strong>, <strong>T10</strong>, <strong>T16</strong>, and <strong>T18</strong> displayed significant antibacterial activity, while compounds <strong>T12</strong> and <strong>T14</strong> demonstrated significant antifungal activity. Subsequently, the most potent compounds were evaluated for their potential cytotoxicity to the Vero cell line <em>via</em> the MTT assay, revealing IC<small><sub>50</sub></small> values surpassing 375 μM, indicative of minimal cytotoxicity. Additionally, we conducted <em>in silico</em> studies on these target molecules to better understand their action mechanisms. The <em>in silico</em> investigations suggest that the target enzyme involved in the action of the compounds may be DprE1. However, further experimental validation is necessary to ascertain the target responsible for the whole cell activity. All the target compounds are docked within the active site of the DprE1 enzyme, demonstrating favorable binding interactions. Furthermore, we predicted the ADME properties, physicochemical characteristics, and drug-like qualities of the target compounds using <em>in silico</em> methods. We also performed DFT studies to examine their electronic properties. These findings collectively indicate that the active compounds hold substantial promise as prospective contenders for the development of novel antitubercular agents.</p>","PeriodicalId":101141,"journal":{"name":"RSC Pharmaceutics","volume":" 2","pages":" 283-295"},"PeriodicalIF":0.0,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/pm/d3pm00054k?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141424749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Suresh K. Mondal, Sourav Chakraborty, Sounik Manna and Santi M. Mandal
{"title":"Antimicrobial nanoparticles: current landscape and future challenges","authors":"Suresh K. Mondal, Sourav Chakraborty, Sounik Manna and Santi M. Mandal","doi":"10.1039/D4PM00032C","DOIUrl":"https://doi.org/10.1039/D4PM00032C","url":null,"abstract":"<p >Antimicrobial resistance poses a serious threat to global health, necessitating the exploration of innovative solutions. Antimicrobial nanoparticles have emerged as a promising avenue, exhibiting unique properties by producing superoxide ions and hydroxyl radicals that efficiently kill bacteria. This article takes an in-depth look at state-of-the-art antimicrobial nanoparticles, their types, and modes of action. Metallic, polymeric, lipid, and carbon-based nanoparticles mostly exhibit antimicrobial actions by disrupting membranes, inhibiting enzymes, and producing different types of reactive oxygen species. Despite their promising potential, challenges and concerns surrounding cytotoxicity, biocompatibility, and environmental impact due to the development of resistance demand meticulous consideration and critical evaluation. This raises an urgent need for continuous research efforts, focusing on standardized regulatory outlines and advancements in the tunable synthesis of nanoparticles with optimized balance, large surface area, hydrophobicity, and cationic nature to harness their full potential in controlling antibiotic-resistant bacterial infections and wound management.</p>","PeriodicalId":101141,"journal":{"name":"RSC Pharmaceutics","volume":" 3","pages":" 388-402"},"PeriodicalIF":0.0,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/pm/d4pm00032c?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141980147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abdullahi Magaji Dauda, Thomas Swift, Richard Telford, Hend A. A. Abd El-wahab, Chhanda Charan Danta, Klaus Pors and Amalia Ruiz
{"title":"Insight into the liposomal encapsulation of mono and bis-naphthalimides†","authors":"Abdullahi Magaji Dauda, Thomas Swift, Richard Telford, Hend A. A. Abd El-wahab, Chhanda Charan Danta, Klaus Pors and Amalia Ruiz","doi":"10.1039/D3PM00060E","DOIUrl":"https://doi.org/10.1039/D3PM00060E","url":null,"abstract":"<p >Mitonafide-loaded liposomes are a promising strategy to overcome the neurotoxicity observed in clinical trials for this drug. This study investigates the influence of loaded mitonafide or a dimer analogue on different liposomal formulations and their therapeutic efficacy <em>in vitro</em>. Physicochemical properties of the liposomes were manipulated using different loading methods (namely bilayer or core loading) and varying the rigidity of the bilayer using distinct phospholipid compositions. Our results demonstrated that the mitonafide dimer analogue had a comparable encapsulation efficiency (EE%) into the liposomes when loaded into rigid or flexible bilayers in contrast to the low mitonafide monomer EE%. A pH gradient core loading method resulted in a more efficient mechanism to load the monomer into the liposomes. DOSY NMR and spectrofluorometric studies revealed key differences in the structure of the vesicles and the arrangement of the monomer or the dimer in the bilayer or the core of the liposomes. The <em>in vitro</em> assessment of the formulations using MDA-MB-231 and RT-112 cells revealed that a flexible lipid bilayer allows a faster drug release, which correlated well with the spectroscopy studies. This study investigated for the first time that the characteristics of the lipid bilayer and the loading method influence the encapsulation efficacy, colloidal properties, photoactivity and stability of mono and bis-naphthalimides loaded in a liposomal carrier, essential factors that will impact the performance of the formulation in a biological scenario.</p>","PeriodicalId":101141,"journal":{"name":"RSC Pharmaceutics","volume":" 2","pages":" 272-282"},"PeriodicalIF":0.0,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/pm/d3pm00060e?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141424748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Weranga Rajapaksha, Irosha H. W. Nicholas, T. Thoradeniya, D. Nedra Karunaratne and V. Karunaratne
{"title":"Novel alginate nanoparticles for the simultaneous delivery of iron and folate: a potential nano-drug delivery system for anaemic patients","authors":"Weranga Rajapaksha, Irosha H. W. Nicholas, T. Thoradeniya, D. Nedra Karunaratne and V. Karunaratne","doi":"10.1039/D3PM00068K","DOIUrl":"https://doi.org/10.1039/D3PM00068K","url":null,"abstract":"<p >Biopolymer nanoparticles have emerged as promising carriers for bioactive agents, offering sustained or controlled release and improved biocompatibility. The purpose of this study was to design novel calcium cross-linked alginate nanoparticles as a delivery system for ferrous ascorbate and folic acid, synthesized through a modified ionic gelation method, to enhance their oral bioavailability. Calcium alginate nanoparticles were successfully prepared using a modified ionic gelation method, and their particle size and zeta potential were characterized. These nanoparticles were then loaded with ferrous ascorbate and folic acid, and successful encapsulation was confirmed using electron energy loss spectroscopy (EELS) and X-ray photoelectron spectroscopy (XPS). The morphology of the loaded nanoparticles was also investigated using electron microscopy techniques. The encapsulation efficiency of ferrous ascorbate and folic acid was determined to be 95 ± 1.9% and 80 ± 0.7%, respectively. <em>In vitro</em> release studies demonstrated that the release of ferrous ascorbate and folic acid from the loaded nanoparticles was pH-dependent, with a slower release rate being observed at pH 7.4 compared to that at pH 2. The release kinetics was found to follow the Korsmeyer–Peppas diffusion model, suggesting a combination of Fickian diffusion and anomalous diffusion mechanisms. Overall, the findings of this study indicate that the alginate nanoparticles have the potential to serve as a promising nano-drug delivery system for ferrous ascorbate and folic acid, potentially improving their oral bioavailability and therapeutic efficacy in the treatment and prevention of anaemia.</p>","PeriodicalId":101141,"journal":{"name":"RSC Pharmaceutics","volume":" 2","pages":" 259-271"},"PeriodicalIF":0.0,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/pm/d3pm00068k?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141424747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}