{"title":"Nano–bio interactions and drug delivery using soft nanoparticles: a new paradigm in pharmaceutical cargo release","authors":"Rohini Singh, Fei Rui Long, Anjali Saini, Natali Joma, Abhirup Basu, Morteza Mahmoudi, Hojatollah Vali and Ashok Kakkar","doi":"10.1039/D4PM00170B","DOIUrl":null,"url":null,"abstract":"<p >The bilateral relationship between nanomaterials and biological systems can play a significant role in therapeutic interventions and diagnostics. The nanomaterials may lose their synthetic identity after encountering biological fluids (<em>e.g.</em>, serum or plasma), and it might lead to unintended outcomes in real-time applications. Despite advances in nanomedicine, clinical translation and overall patient survival using nanoformulations have largely remained elusive. The layer of biomolecules formed around nanoparticles (NPs), often referred to as protein-corona (PC), can impact their physicochemical properties, including size, surface charge/chemistry, chemical composition, solubility, <em>etc</em>. Recently, a few mechanistic evaluations have demonstrated that the formation of a corona layer on nanoparticles can also have a consequential effect on the release profiles of polymeric soft NPs. To evaluate their therapeutic efficacy and resolve discrepancies that exist between <em>in vitro</em> and <em>in vivo</em> results, transition of NPs from their native to the corona-coupled state and its impact on unloading of their cargo need to be understood. Here, we highlight (i) how inherent properties of polymer precursors can affect PC build-up on soft NPs and its impact on cargo-release kinetics and (ii) limitations of existing methods in analyzing PC in complex systems, with emphasis on the impact nano–bio interactions have on the soft nanoparticle-based drug delivery domain.</p>","PeriodicalId":101141,"journal":{"name":"RSC Pharmaceutics","volume":" 1","pages":" 44-58"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/pm/d4pm00170b?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Pharmaceutics","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/pm/d4pm00170b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The bilateral relationship between nanomaterials and biological systems can play a significant role in therapeutic interventions and diagnostics. The nanomaterials may lose their synthetic identity after encountering biological fluids (e.g., serum or plasma), and it might lead to unintended outcomes in real-time applications. Despite advances in nanomedicine, clinical translation and overall patient survival using nanoformulations have largely remained elusive. The layer of biomolecules formed around nanoparticles (NPs), often referred to as protein-corona (PC), can impact their physicochemical properties, including size, surface charge/chemistry, chemical composition, solubility, etc. Recently, a few mechanistic evaluations have demonstrated that the formation of a corona layer on nanoparticles can also have a consequential effect on the release profiles of polymeric soft NPs. To evaluate their therapeutic efficacy and resolve discrepancies that exist between in vitro and in vivo results, transition of NPs from their native to the corona-coupled state and its impact on unloading of their cargo need to be understood. Here, we highlight (i) how inherent properties of polymer precursors can affect PC build-up on soft NPs and its impact on cargo-release kinetics and (ii) limitations of existing methods in analyzing PC in complex systems, with emphasis on the impact nano–bio interactions have on the soft nanoparticle-based drug delivery domain.