Redox Biochemistry and Chemistry最新文献

筛选
英文 中文
Perceptions of peroxynitrite reactivity – Then and now 对过氧化亚硝酸盐反应性的认识--过去和现在
Redox Biochemistry and Chemistry Pub Date : 2024-08-20 DOI: 10.1016/j.rbc.2024.100041
{"title":"Perceptions of peroxynitrite reactivity – Then and now","authors":"","doi":"10.1016/j.rbc.2024.100041","DOIUrl":"10.1016/j.rbc.2024.100041","url":null,"abstract":"<div><div>Many chemical and biological reactions involving peroxynitrite<span><span><sup>3</sup></span></span> occur by unusual rate laws that are independent of the identity of the reacting partner. The true nature of these reactions and the identities of actual reactive species have been the subject of considerable debate ever since the notion that peroxynitrite is an important component of oxidative stress was first introduced in the early 1990s. We present herein a succinct historical review of this topic written from the perspective that intermediary inorganic free radicals are the causative agents in these reactions. This viewpoint provides a complete self-consistent rationalization of all verified data from multiple laboratories, whereas other explanations have been unable to do so. Recognition of the radical nature of peroxynitrite decomposition has also allowed a reassessment of the quantitative mechanism of CO<sub>2</sub>-catalyzed peroxynitrite decomposition. Detailed analyses indicate that the constant for rate-limiting formation of the putative reactive carbon dioxide adduct (<span><math><msup><mrow><msub><mtext>ONOOCO</mtext><mn>2</mn></msub></mrow><mo>−</mo></msup></math></span>)<span><span><sup>3</sup></span></span> is actually ∼20% less than previously recognized and CO<sub>2</sub> turnover numbers for catalysis (that is, the number of reaction cycles that CO<sub>2</sub> undergoes before being removed as bicarbonate) are relatively large and dependent upon the [CO<sub>2</sub>]/[ONOO<sup>−</sup>] ratio in the reaction environment.</div></div>","PeriodicalId":101065,"journal":{"name":"Redox Biochemistry and Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142323378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Boronate-based bioactive compounds activated by peroxynitrite and hydrogen peroxide 过亚硝酸盐和过氧化氢激活的硼酸盐生物活性化合物
Redox Biochemistry and Chemistry Pub Date : 2024-08-14 DOI: 10.1016/j.rbc.2024.100040
{"title":"Boronate-based bioactive compounds activated by peroxynitrite and hydrogen peroxide","authors":"","doi":"10.1016/j.rbc.2024.100040","DOIUrl":"10.1016/j.rbc.2024.100040","url":null,"abstract":"<div><p>Boronates react directly and stoichiometrically with peroxynitrite and hydrogen peroxide. For this reason, boronates have been widely used as peroxynitrite- and hydrogen peroxide-sensitive moieties in various donors of bioactive compounds. So far, numerous boronate-based prodrugs and theranostics have been developed, characterized, and used in biological research. Here, the kinetic aspects of their activation are discussed, and the potential benefits of modifying their original structure with a boronic or boronobenzyl moiety are described.</p></div>","PeriodicalId":101065,"journal":{"name":"Redox Biochemistry and Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S277317662400021X/pdfft?md5=c58c101adf9a9f3d95e787fad55df43b&pid=1-s2.0-S277317662400021X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142096129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reaction of peroxynitrite with thiols, hydrogen sulfide and persulfides 过亚硝酸与硫醇、硫化氢和过硫化物的反应
Redox Biochemistry and Chemistry Pub Date : 2024-08-08 DOI: 10.1016/j.rbc.2024.100039
{"title":"Reaction of peroxynitrite with thiols, hydrogen sulfide and persulfides","authors":"","doi":"10.1016/j.rbc.2024.100039","DOIUrl":"10.1016/j.rbc.2024.100039","url":null,"abstract":"<div><p>Three decades of research on the biochemistry of peroxynitrite (ONOOH/ONOO<sup>−</sup>) have established that this stealthy oxidant is formed in biological systems, and that its main targets are carbon dioxide (CO<sub>2</sub>), metalloproteins and thiols (RSH). Peroxynitrous acid reacts directly with thiols (precisely, with thiolates, RS<sup>−</sup>), forming sulfenic acids (RSOH). In addition, the free radicals derived from peroxynitrite, mainly carbonate radical anion (<span><math><msup><msub><mi>CO</mi><mn>3</mn></msub><mrow><mo>•</mo><mo>−</mo></mrow></msup></math></span>) and nitrogen dioxide (<span><math><msup><msub><mi>NO</mi><mn>2</mn></msub><mrow><mo>•</mo></mrow></msup></math></span>) formed from the reaction of peroxynitrite anion with CO<sub>2</sub>, oxidize thiols to thiyl radicals (RS<sup>•</sup>). These two pathways are under kinetic competition. The primary products of thiol oxidation can follow different decay routes; sulfenic acids usually react with other thiols forming disulfides, while thiyl radicals can react with oxygen, with other thiols and with other reductants such as ascorbic acid. Peroxynitrite is also able to oxidize hydrogen sulfide (H<sub>2</sub>S/HS<sup>−</sup>) and persulfides (RSSH/RSS<sup>−</sup>). Among the different biological thiols, peroxiredoxins stand out as main peroxynitrite reductases due to their very high rate constants of reaction with peroxynitrite together with their abundance. Rooted in kinetic concepts, evidence is emerging for the role of peroxiredoxins in peroxynitrite detoxification, with potential implications in diseases in which peroxynitrite is involved.</p></div>","PeriodicalId":101065,"journal":{"name":"Redox Biochemistry and Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773176624000208/pdfft?md5=d3ba6f796dbd6aef9cd2c5262abce81f&pid=1-s2.0-S2773176624000208-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142164092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Peroxynitrite: A tale of two radicals 亚硝酸过氧化物两个自由基的故事
Redox Biochemistry and Chemistry Pub Date : 2024-08-03 DOI: 10.1016/j.rbc.2024.100038
{"title":"Peroxynitrite: A tale of two radicals","authors":"","doi":"10.1016/j.rbc.2024.100038","DOIUrl":"10.1016/j.rbc.2024.100038","url":null,"abstract":"<div><p>The published syntheses of peroxynitrite from azide, nitrite, amylnitrite, hydroxylamine, nitrogen monoxide, and ammonia are discussed. With one exception, all of these syntheses yield peroxynitrite contaminated with nitrate and nitrite as well as reactants. The rate constant for the reaction of nitrogen monoxide with superoxide has been determined by pulse radiolysis and flash photolysis. In pulse radiolysis studies, the formation of the reactants may be rate-limiting and could lead to underestimation of the second-order rate constant. The conditions of flash photolysis experiments can be chosen to minimize conflict between reactant formation and the reaction half-life, thus the rate constant of 1.6 × 10<sup>10</sup> M<sup>−1</sup> s<sup>−1</sup> determined by flash photolysis is preferred. The toxicity of peroxynitrite can be attributed mainly to its rapid reaction with carbon dioxide to yield the oxidizing trioxidocarbonate(•1−) and nitrogen dioxide radicals.</p></div>","PeriodicalId":101065,"journal":{"name":"Redox Biochemistry and Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773176624000191/pdfft?md5=734775ea1595e2d19112d81fbf834ca5&pid=1-s2.0-S2773176624000191-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142096130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NADPH oxidase 5: Where are we now and which way to proceed? NADPH 氧化酶 5:我们现在在哪里?
Redox Biochemistry and Chemistry Pub Date : 2024-08-01 DOI: 10.1016/j.rbc.2024.100036
{"title":"NADPH oxidase 5: Where are we now and which way to proceed?","authors":"","doi":"10.1016/j.rbc.2024.100036","DOIUrl":"10.1016/j.rbc.2024.100036","url":null,"abstract":"<div><p>Since the incorporation of mitochondria in early eukaryotes cells struggle to keep the deleterious effects of reactive oxygen species (ROS), mainly originating from the respiratory chain, at bay. Evolutionary adaptation to ROS burden went so far that by acting as messenger and effector molecules, ROS became important in maintaining homeostasis. The evolutionary success of this phenomenon is underscored by the arising of professional ROS-generating enzymes, namely the family of NADPH oxidases (NOXes). NOXes, by shaping ROS levels at different subcellular locations and in extracellular space, are involved in such fundamental functions as proliferation, differentiation, apoptosis, host defense, fertilization, and hormone biosynthesis. NOX5, being a calcium-regulated professional ROS source exerts its function at the crossroad of these two fundamental but potentially deleterious intracellular signaling pathways (i.e. Ca<sup>2+</sup> and ROS). The expression of NOX5 in the adult human body under unchallenged conditions is restricted to very few sites, among which the two major tissue groups are genital organs (mainly testis) and immune tissues (mainly spleen). In cases of increased cellular proliferation and protein synthesis (e.g., diverse tumors, cultured primary cells, or sites of tissue damage) the expression and activity of NOX5 is often upregulated in various tissues. This and the evolutionary conserved nature of NOX5 would imply a very fundamental role for this enzyme, but intriguingly the genomes of rodents essentially lack the NOX5 gene. The latter fact had been a major obstacle in determining the physiological roles of NOX5 in normal tissues until the very recent generation of a NOX5-deficient rabbit model.</p></div>","PeriodicalId":101065,"journal":{"name":"Redox Biochemistry and Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773176624000178/pdfft?md5=2687164805394d26bf3476b55ab647bc&pid=1-s2.0-S2773176624000178-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141849241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparing thiol and selenol reactivity towards peroxynitrite by computer simulation 通过计算机模拟比较硫醇和硒醇对过硫酸盐的反应性
Redox Biochemistry and Chemistry Pub Date : 2024-08-01 DOI: 10.1016/j.rbc.2024.100035
{"title":"Comparing thiol and selenol reactivity towards peroxynitrite by computer simulation","authors":"","doi":"10.1016/j.rbc.2024.100035","DOIUrl":"10.1016/j.rbc.2024.100035","url":null,"abstract":"<div><p>Peroxynitrite is a very reactive species implicated in a variety of pathophysiological cellular processes. Particularly, peroxynitrite-mediated oxidation of cellular thiol-containing compounds such as cysteine residues is a key process which has been extensively studied. Cysteine plays roles in many redox biochemistry pathways. In contrast, selenocysteine, the 21st amino acid, is only present in 25 human proteins. Investigating the molecular basis of selenocysteine's reactivity may provide insights into its unique role in these selenocysteine-containing proteins. The two-electron oxidation of thiols or selenols by peroxynitrite is a process that is carried out by the thiolate/selenate forms and peroxynitrous acid.</p><p>In this work, we shed light on the molecular basis of the differential reactivity of both species towards peroxynitrite by means of state-of-the-art computer simulations. We performed electronic structure calculations of the reaction in the methanethiolate and methaneselenolate model systems with peroxynitrous acid at different levels of theory using an implicit solvent scheme. In addition, we employed a multi-scale quantum mechanics/molecular mechanics approach for obtaining free energy profiles of these chemical reactions in aqueous solution, which enabled the comparison between the simulations and the available experimental data. Our results suggest that the larger reactivity observed in the selenocysteine case at physiological pH is mainly due to the lower pKa, which affords a larger fraction of the reactive anionic species in these conditions, and in a second place to a slightly enhanced intrinsic reactivity of the selenate form due to its larger nucleophilicity.</p></div>","PeriodicalId":101065,"journal":{"name":"Redox Biochemistry and Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773176624000166/pdfft?md5=b9af632f0685ee493c0ed788423b63f7&pid=1-s2.0-S2773176624000166-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141850730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The specificity of endogenous fatty acid nitration: only conjugated substrates support the in vivo formation of nitro-fatty acids 内源性脂肪酸硝化的特异性:只有共轭底物才支持体内硝基脂肪酸的形成
Redox Biochemistry and Chemistry Pub Date : 2024-08-01 DOI: 10.1016/j.rbc.2024.100037
{"title":"The specificity of endogenous fatty acid nitration: only conjugated substrates support the in vivo formation of nitro-fatty acids","authors":"","doi":"10.1016/j.rbc.2024.100037","DOIUrl":"10.1016/j.rbc.2024.100037","url":null,"abstract":"<div><p>Through multiple pathways, nitrogen dioxide (•NO<sub>2</sub>) is the main species involved in endogenous nitration reactions. Early studies in the field primarily explored tyrosine nitration, a dominant reaction in the field. It was later shown that lipids are also nitration targets and generate an array of reaction products. Conjugated fatty acids are the preferential substrates of lipid nitration in vivo, generating electrophilic nitro-fatty acids (NO<sub>2</sub>–FAs), which serve as pleiotropic signaling modulators. In contrast, exposure of bisallylic fatty acids, including linoleic, linolenic and arachidonic acid, to •NO<sub>2</sub> does not lead, under biological conditions, to the formation of nitrated species. This review focuses on the reaction mechanisms and products of lipid nitration and substrate specificity, focusing on the differential reactivity of conjugated dienes and bisallylic alkenes.</p></div>","PeriodicalId":101065,"journal":{"name":"Redox Biochemistry and Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S277317662400018X/pdfft?md5=96e201513036acdcd04293b5d3e95639&pid=1-s2.0-S277317662400018X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141853118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Small molecule probes for peroxynitrite detection 用于检测过亚硝酸盐的小分子探针
Redox Biochemistry and Chemistry Pub Date : 2024-07-26 DOI: 10.1016/j.rbc.2024.100034
{"title":"Small molecule probes for peroxynitrite detection","authors":"","doi":"10.1016/j.rbc.2024.100034","DOIUrl":"10.1016/j.rbc.2024.100034","url":null,"abstract":"<div><p>Peroxynitrite (ONOO<sup>−</sup>/ONOOH) is a short-lived but highly reactive species that is formed in the diffusion-controlled reaction between nitric oxide and the superoxide radical anion. It can oxidize certain biomolecules and has been considered as a key cellular oxidant formed under various pathophysiological conditions. It is crucial to selectively detect and quantify ONOO<sup>−</sup> to determine its role in biological processes. In this review, we discuss various approaches used to detect ONOO<sup>−</sup> in cell-free and cellular systems with the major emphasis on small-molecule chemical probes. We review the chemical principles and mechanisms responsible for the formation of the detectable products, and plausible limitations of the probes. We recommend the use of boronate-based chemical probes for ONOO<sup>−</sup>, as they react directly and rapidly with ONOO<sup>−</sup>, they produce minor but ONOO<sup>−</sup>‒specific products, and the reaction kinetics and mechanism have been rigorously characterized. Specific experimental approaches and protocols for the detection of ONOO<sup>−</sup> in cell-free, cellular, and <em>in vivo</em> systems using boronate-based molecular probes are provided (as shown in Boxes 1-6).</p></div>","PeriodicalId":101065,"journal":{"name":"Redox Biochemistry and Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773176624000154/pdfft?md5=a4723535d75e5476ac6136a1e8cdeac7&pid=1-s2.0-S2773176624000154-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141847473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diffusion of peroxynitrite, its precursors, and derived reactive species, and the effect of cell membranes 过亚硝酸盐、其前体和衍生活性物种的扩散以及细胞膜的影响
Redox Biochemistry and Chemistry Pub Date : 2024-07-05 DOI: 10.1016/j.rbc.2024.100033
{"title":"Diffusion of peroxynitrite, its precursors, and derived reactive species, and the effect of cell membranes","authors":"","doi":"10.1016/j.rbc.2024.100033","DOIUrl":"10.1016/j.rbc.2024.100033","url":null,"abstract":"<div><p>Peroxynitrite is a powerful oxidant formed in vivo in sites where superoxide and nitric oxide coincide. Peroxynitrite is cytotoxic through oxidative modification of target biomolecules that can occur by direct or indirect reactions. Indirect reactions usually involve the generation of peroxynitrite-derived radicals that include nitrogen dioxide, hydroxyl radical, and carbonate radical. All these species have different behaviors in vivo, because of their intrinsic reactivity and how effectively they can be compartmentalized by cellular membranes. In this review, we analyze quantitative information on the estimated half-lives and the corresponding estimated diffusion distances of peroxynitrite, its precursors, and its derived reactive species in vivo. Furthermore, we discuss the permeability of cellular and synthetic lipid membranes to the different species and how effective compartmentalization is achieved for some of them, limiting the biological site of reactions.</p></div>","PeriodicalId":101065,"journal":{"name":"Redox Biochemistry and Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773176624000142/pdfft?md5=330518d6b68fea24fff7146d2022ce23&pid=1-s2.0-S2773176624000142-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141629868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The chemistry of HNO-releasing compounds 释放 HNO 的化合物的化学性质
Redox Biochemistry and Chemistry Pub Date : 2024-06-01 DOI: 10.1016/j.rbc.2024.100031
Renata Smulik-Izydorczyk , Jakub Pięta , Radosław Michalski , Monika Rola , Karol Kramkowski , Angelika Artelska , Jacek Zielonka , Adam Bartłomiej Sikora
{"title":"The chemistry of HNO-releasing compounds","authors":"Renata Smulik-Izydorczyk ,&nbsp;Jakub Pięta ,&nbsp;Radosław Michalski ,&nbsp;Monika Rola ,&nbsp;Karol Kramkowski ,&nbsp;Angelika Artelska ,&nbsp;Jacek Zielonka ,&nbsp;Adam Bartłomiej Sikora","doi":"10.1016/j.rbc.2024.100031","DOIUrl":"10.1016/j.rbc.2024.100031","url":null,"abstract":"<div><p><strong>HNO</strong> (azanone or nitroxyl), formally a product of the one-electron reduction of a nitric oxide, exhibits diverse and unique biological activity. The chemistry, biochemistry, and biological/pharmacological effects of <strong>H</strong><strong>N</strong><strong>O</strong> have been studied extensively. Due to rapid dimerization and hence short lifetime in solutions, in chemical and biological studies <strong>HNO</strong> is typically produced <em>in situ</em> from its thermal donors. To date, a great variety of chemical <strong>HNO</strong> donors have been synthesized, characterized, and utilized in biological studies. Here, we discuss the chemistry of <strong>HNO</strong>-releasing compounds, with the emphasis on the complexity of the proposed reaction mechanisms.</p></div>","PeriodicalId":101065,"journal":{"name":"Redox Biochemistry and Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773176624000129/pdfft?md5=d41d616194237ca22b5077ab1b087f18&pid=1-s2.0-S2773176624000129-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141281040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信