Enzymes of glycolysis and the pentose phosphate pathway as targets of oxidants: Role of redox reactions on the carbohydrate catabolism

Eduardo Fuentes-Lemus , Karen Usgame , Angélica Fierro , Camilo López-Alarcón
{"title":"Enzymes of glycolysis and the pentose phosphate pathway as targets of oxidants: Role of redox reactions on the carbohydrate catabolism","authors":"Eduardo Fuentes-Lemus ,&nbsp;Karen Usgame ,&nbsp;Angélica Fierro ,&nbsp;Camilo López-Alarcón","doi":"10.1016/j.rbc.2025.100049","DOIUrl":null,"url":null,"abstract":"<div><div>Redox reactions can modulate metabolic and signaling pathways with consequences on cellular adaptation to different stimuli. The abundance and structural features of some metabolic enzymes make these targets of oxidants, including one- and two-electron oxidant molecules, altering their structure and/or function. Therefore, redox processes play an important role in physiology and pathology. In particular, the oxidative post-translational modification of the enzymes that participate in glycolysis and the pentose phosphate pathway (PPP) can modulate the carbon flux affecting synthesis of nucleotides, as well as production of adenosine triphosphate (ATP) and reducing equivalents (in the form of nicotinamide adenine dinucleotide phosphate, NADPH). Specifically, generation of NADPH, a cofactor important for cell homeostasis, is key to the management of the redox status of cells towards oxidative insults. In this review we discuss the available literature on the impact of oxidative post-translational modifications on key glycolytic and PPP enzymes with an analysis of the consequences these may have for cell metabolic adaptation. We also discuss the contributions of new experimental and <em>in silico</em> approaches to the redox biochemistry field, which have significantly illuminated the intricate relationship between the pathways involved in carbohydrate metabolism and how these could be regulated by redox reactions.</div></div>","PeriodicalId":101065,"journal":{"name":"Redox Biochemistry and Chemistry","volume":"11 ","pages":"Article 100049"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Redox Biochemistry and Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773176625000021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Redox reactions can modulate metabolic and signaling pathways with consequences on cellular adaptation to different stimuli. The abundance and structural features of some metabolic enzymes make these targets of oxidants, including one- and two-electron oxidant molecules, altering their structure and/or function. Therefore, redox processes play an important role in physiology and pathology. In particular, the oxidative post-translational modification of the enzymes that participate in glycolysis and the pentose phosphate pathway (PPP) can modulate the carbon flux affecting synthesis of nucleotides, as well as production of adenosine triphosphate (ATP) and reducing equivalents (in the form of nicotinamide adenine dinucleotide phosphate, NADPH). Specifically, generation of NADPH, a cofactor important for cell homeostasis, is key to the management of the redox status of cells towards oxidative insults. In this review we discuss the available literature on the impact of oxidative post-translational modifications on key glycolytic and PPP enzymes with an analysis of the consequences these may have for cell metabolic adaptation. We also discuss the contributions of new experimental and in silico approaches to the redox biochemistry field, which have significantly illuminated the intricate relationship between the pathways involved in carbohydrate metabolism and how these could be regulated by redox reactions.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信