{"title":"Delivering CAR-T cells into solid tumors via hydrogels","authors":"Shun-Yu Wu, Feng Ji, Bin Xu, Fu-Gen Wu","doi":"10.1002/mog2.40","DOIUrl":"https://doi.org/10.1002/mog2.40","url":null,"abstract":"<p>Chimeric antigen receptor (CAR)-T cell therapy is a promising form of cancer immunotherapy that genetically modifies a patient's own T cells to express CARs for the specific recognition and eradication of cancer cells. Unfortunately, unlike the impressive advancements it achieves in hematologic cancer treatment, CAR-T cell therapy has encountered obstacles in treating solid tumors such as high cost, inadequate tumor infiltration, and immunosuppressive tumor microenvironment. Recently, the regional administration of CAR-T cells via hydrogel platforms has been investigated as a potential method to not only promote tumor infiltration, cell expansion, and anticancer efficacy of the CAR-T cells but also provide a multifunctional platform to introduce additional therapeutic agents for achieving potentiated cancer therapy. In this perspective, different design strategies of CAR-T cell delivery hydrogels are introduced. Besides, various types of therapeutic agents incorporated in the hydrogel platforms and diverse hydrogel formulations have been discussed. The current challenges and future research directions on CAR-T cell delivery hydrogels are also proposed. It is hoped that this perspective can help future researchers develop new CAR-T cell delivery hydrogels that can effectively fight against solid tumors.</p>","PeriodicalId":100902,"journal":{"name":"MedComm – Oncology","volume":"2 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mog2.40","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50138932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Lactate: A critical regulator of cell proliferation via anaphase promoting complex remodeling","authors":"Qiqing Yang, Long Zhang, Jun Chen","doi":"10.1002/mog2.38","DOIUrl":"https://doi.org/10.1002/mog2.38","url":null,"abstract":"<p>In a study recently published in <i>Nature</i>, Liu et al. discovered that lactate directly inhibits SUMO-specific peptidase 1 (SENP1), resulting in the stabilization of anaphase promoting complex (APC) subunit 4 (APC4) SUMOylation, and transient binding of APC/cyclosome (APC/C) and ubiquitin conjugating enzyme E2 C (UBE2C), which promotes the ubiquitination and degradation of cyclin B1 and securin.<span><sup>1</sup></span> Furthermore, sustained accumulation of lactate was found to counteract the effects of anti-mitotic drugs by inducing mitotic slippage, which ultimately facilitates mitotic exit. This study shed light on a potential mechanism behind the observed high levels of lactate in rapidly dividing cells.</p><p>Cancer cells exhibit a unique metabolic phenotype characterized by increased glucose uptake and reliance on aerobic glycolysis to fuel their rapid proliferation. This metabolic shift contributes to lactate accumulation, which is closely associated with cell proliferation; however, the precise mechanism of the latter remains unclear. APC/C is a member of the ubiquitin ligase family that plays a crucial role in regulating the metaphase-to-anaphase transition and mitotic exit by assembling K11-linked ubiquitin chains on substrates such as cyclin B1 and securin.<span><sup>2</sup></span> A recently published work by Liu et al. uncovered a link between lactate and APC/C activity, and elucidated the significance of this connection in cell cycle and cell proliferation modulation.</p><p>To explore the direct effect of elevated lactate levels on the entire proteome, Liu et al. treated native human embryonic kidney cell lysates with 15 or 25 mM <span>l</span>-lactate before conducting thermal proteomic profiling. They observed a significant shift in the thermostability of UBE2C, an E2 enzyme recruited by APC/C upon structural reorganization of its subunits. However, it is unlikely that lactate binds directly to UBE2C because of its low affinity. Moreover, no change in the abundance or posttranslational modification of UBE2C was detected, suggesting that <span>l</span>-lactate might enhance the interaction between UBE2C and APC/C. To verify this hypothesis, cells were first synchronized to pro-metaphase, a period during which APC/C is inhibited due to its interaction with the mitotic checkpoint complex. Subsequently, Liu et al. incubated cell lysates with 15 mM <span>l</span>-lactate and performed immunoprecipitation of APC/C, revealing that <span>l</span>-lactate significantly enhanced the binding between UBE2C and APC/C. In addition, mass spectrometry analysis of APC/C showed a lactate-dependent elevation of SUMO2/3 conjunctions. Previous studies have shown that SUMOylation of APC4 on residues K772 and K798 results in a substantial rearrangement of the WHB domain in APC2, facilitating the binding of UBE2C to APC/C for an efficient APC/C activation.<span><sup>3, 4</sup></span> To further investigate the role of APC4 SUMOylation in lactate-","PeriodicalId":100902,"journal":{"name":"MedComm – Oncology","volume":"2 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mog2.38","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50121884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Gasdermin E plasmid DNA/indocyanine green coloaded hybrid nanoparticles with spatiotemporal controllability to induce pyroptosis for colon cancer treatment","authors":"Ailing Jiang, Mao Wang, Huimin Liu, Simeng Liu, Xiaoshuang Song, Yu Zou, Yuchuan Deng, Qin Qin, Yiran Song, Yu Zheng","doi":"10.1002/mog2.33","DOIUrl":"https://doi.org/10.1002/mog2.33","url":null,"abstract":"<p>Pyroptosis is an immunogenic cell death and would trigger robust antitumor immunity. However, due to cytoxicity of pyroptosis executors, Gasdermin family proteins, it is indispensable to construct tumor-specific vectors. Here, we report the development of a novel vector named lipid-coated poly(lactide-co-glycolide) (PLGA) nanoparticles coloaded with Gasdermin E expressing plasmid DNA (GSDME-pDNA) with a heat-inducible mouse heat shock protein 70 (mHSP70) as the promoter and a photosensitizer indocyanine green (ICG) to activate the mHSP70 element. The cellular internalization and transfection rate of the vector were remarkably enhanced by photothermal treatment. And the mHSP70 promoter further improved the gene transfection rate for about 15-fold. With the combination of oxaliplatin (OXA), the mechanism switch between apoptosis and pyroptosis was fulfilled by cleavage of GSDME through activated caspase-3, which promoted damage-associated molecular patterns (DAMPs) release and increased the infiltration of immune cells at the tumor site. This combination strategy not only prominently inhibited the growth of the treated tumor, but also exhibited a lethal effect on the distal tumors. Besides, mouse colon cancer cell CT26 overexpressing GSDME after OXA treatment had the potential to be the preventive tumor vaccine. This study provides a novel thought and feasible method for the clinical treatment of colon cancer.</p>","PeriodicalId":100902,"journal":{"name":"MedComm – Oncology","volume":"2 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mog2.33","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50117711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lijing Du, Shasha Li, Xue Xiao, Jin Li, Yuanfang Sun, Shuai Ji, Huizi Jin, Zhaolai Hua, Juming Ma, Xi Wang, Shikai Yan
{"title":"Metabolomic profiling of plasma reveals potential biomarkers for screening and early diagnosis of gastric cancer and precancerous stages","authors":"Lijing Du, Shasha Li, Xue Xiao, Jin Li, Yuanfang Sun, Shuai Ji, Huizi Jin, Zhaolai Hua, Juming Ma, Xi Wang, Shikai Yan","doi":"10.1002/mog2.32","DOIUrl":"https://doi.org/10.1002/mog2.32","url":null,"abstract":"<p>Gastric cancer (GC) faces a great challenge in clinical diagnosis, that it often is detected at advanced stages and there is a loss of optimum time for treatment. Thus, it is necessary to develop effective strategies for diagnosis of GC. In this study, 82 participants were enrolled, including 50 chronic superficial gastritis (CSG) patients, 7 early gastric cancer (EGC), and 25 advanced gastric cancer (AGC) ones. Metabolites profiling on patient plasma was performed. Furthermore, the proposed biomarkers were used to create random forest models, in which discrimination efficiency and accuracy were ascertained by receiver operating characteristic (ROC) curve analysis. <span>l</span>-carnitine, <span>l</span>-proline, pyruvaldehyde, phosphatidylcholines (PC) (14:0/18:0), lysophosphatidylcholine (14:0) (LysoPC 14:0), lysinoalanine were defined as the potential biomarker panel for the diagnosis among CSG and EGC patients. Compared with EGC patients, PC(O-18:0/0:0) and LysoPC(20:4(5Z,8Z,11Z,14Z)) were found to be upregulated in AGC patients, whereas<span>l</span>-proline, <span>l</span>-valine, adrenic acid, and pyruvaldehyde downregulated. Pathway analysis revealed several metabolism disorders, involving amino acids and lipid metabolism. ROC analysis demonstrated a high diagnostic performance in disease diagnosis between CSG and GC. The above results indicate that the biomarker panels are sensitive to early diagnosis of GC disease, which is expected to be a promising diagnostic tool for disease stratification studies.</p>","PeriodicalId":100902,"journal":{"name":"MedComm – Oncology","volume":"2 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mog2.32","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50142201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jianqiong Yin, Zhuoran Yao, Jing Pan, Lu Gan, Jianxin Xue
{"title":"Immune checkpoint inhibitor-related myocarditis in thymic epithelial tumors: Recent progress and perspectives","authors":"Jianqiong Yin, Zhuoran Yao, Jing Pan, Lu Gan, Jianxin Xue","doi":"10.1002/mog2.31","DOIUrl":"https://doi.org/10.1002/mog2.31","url":null,"abstract":"<p>Thymic epithelial tumors (TETs) are rare anterior mediastinal malignancies originating in the thymus with poor outcomes, and standard platinum-based chemotherapy shows limited efficacy for treating metastatic or recurrent disease. In this setting, further improved novel treatment strategies are needed. Immune checkpoint inhibitors (ICIs) are widely applied in clinical practice for cancer therapy and early results of clinical trials have brought notable objective responses and lasting survival benefits to patients with TETs. However, the incidences of immune-related adverse events (irAEs), especially cardiac adverse events, are higher than those of other tumor types. Myocarditis is a rapidly progressive and life-threatening irAE in patients treated with ICIs, thereby hindering the further utilization of ICI in TETs patients. Therefore, this article aims to review the results of case series and clinical trials that evaluated ICIs for the treatment of TETs and to provide an overview of the clinical features of fatal ICI-related myocarditis in TETs. Furthermore, we approach insights into the immunobiology of thymic tumors and focus on revealing the mechanisms of cardiotoxicity in patients with TETs, hoping to provide several valuable insights for maximizing the therapeutic potential of ICIs in TETs.</p>","PeriodicalId":100902,"journal":{"name":"MedComm – Oncology","volume":"2 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mog2.31","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50136174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jinrui Wang, Daniel D. Billadeau, Ying Zheng, Da Jia
{"title":"A new synthetic lethal strategy expands the application of PARP inhibitors/cisplatin","authors":"Jinrui Wang, Daniel D. Billadeau, Ying Zheng, Da Jia","doi":"10.1002/mog2.28","DOIUrl":"https://doi.org/10.1002/mog2.28","url":null,"abstract":"<p>In a recent study published in <i>Signal Transduction and Targeted Therapy</i>, <i>Zhang</i> et al.<span><sup>1</sup></span> identified a panel of genes that served as a novel predictor of response to poly adenosine diphosphate-ribose polymerase (PARP) inhibitors/cisplatin in HR proficient patients, which could guide a broader application of PARP inhibitors/cisplatin in cancer therapy.</p><p>Cancer cells differ from normal cells in their ability to repair damaged DNA—most cancer cells lose one or more DNA repair pathways, resulting in greater reliance on the remaining pathways.<span><sup>2</sup></span> Thus, small molecules that can induce DNA damage have been used to treat various cancers. Among them, cisplatin/PARP inhibitors are well established cancer drugs and are used to target tumor cells with homologous recombination (HR) defects.<span><sup>2</sup></span> Platinum salts (carboplatin, cisplatin, and oxaliplatin) are the commonly-used chemotherapeutic agents, which were historically thought to cause cell death by inducing DNA damage.<span><sup>2</sup></span> Recent studies suggest that the mechanisms of action of platinum salts are more diverse<span><sup>3</sup></span> (Figure 1A). Zhang et al.<span><sup>1</sup></span> further showed that cisplatin promotes cell death through DNA damage-induced ribosomal stress, rather than failed DNA repair, in certain tumor cells. PARP inhibitors are approved for the treatment of ovarian and breast cancers with BRCA1/2 mutations, and act through synthetic lethality in DNA repair-deficient tumors.<span><sup>3-5</sup></span> However, it is known that some HR-proficient patients also respond well to PARP inhibitors and cisplatin therapy.<span><sup>3</sup></span> Consistently, Zhang et al.<span><sup>1</sup></span> also identified patients who benefited from the treatment of PARP inhibitors, despite their normal HR functions. Therefore, it is necessary to identify biomarkers that can help to stratify the patients so they will benefit most from PARP inhibitors and cisplatin therapy.</p><p>To identify these biomarkers, the authors analyzed RNA-Seq data from the Cancer Cell Line Encyclopedia and drug sensitivity data (GDSC) from the extensive and Sanger cell line databases<span><sup>1</sup></span> (Figure 1B). They used weighted gene co-expression network analysis to negatively correlate drug signatures with co-expressed gene modules.<span><sup>1</sup></span> Through these analyses, the authors found that expression of genes in the ribosome biogenesis pathway could be used to predict cellular drug response to PARP inhibition or cisplatin-based chemotherapy.<span><sup>1</sup></span> Ultimately, they obtained a panel of 8 genes involved in ribosome biogenesis for further analysis.<span><sup>1</sup></span></p><p>In the following studies, the authors provided multiple lines of evidence suggesting that these eight genes could be used to predict PARP inhibitors/cisplatin sensitivity.<span><sup>1</sup></span> First, ","PeriodicalId":100902,"journal":{"name":"MedComm – Oncology","volume":"2 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mog2.28","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50144503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Overexpression of DAPK1 and Beclin1 under oxygen and glucose deprivation conditions promotes excessive autophagy and apoptosis in A549 cells","authors":"Linlin Wu, Wenxue Sun, Dehua Liao, Yujin Guo, Qingying Si, Dadi Xie, Pei Jiang","doi":"10.1002/mog2.30","DOIUrl":"https://doi.org/10.1002/mog2.30","url":null,"abstract":"<p>In this study, we aimed to determine the specific roles of death-associated protein kinase 1 (DAPK1) and Beclin1 in non-small cell lung cancer (NSCLC) under oxygen and glucose deprivation (OGD). We found that OGD caused most cells to shrink, aggregate, and produce many vacuoles in the cytoplasm. Transmission electron microscopy revealed the presence of autophagic vesicles in the OGD group but not in the Control group. Moreover, the cell counting kit-8 assay showed that cell proliferation was reduced in the OGD group. Quantitative reverse transcription-polymerase chain reaction, western blot, and cell function assays showed that DAPK1 overexpression under OGD promoted apoptosis and autophagy in A549 cells. The coimmunoprecipitation assay confirmed the interaction between DAPK1 and Beclin1 protein. Moreover, knockdown of Beclin1 inhibited autophagy, but its overexpression promoted apoptosis in A549 cells. In vivo tumorigenesis experiment revealed that overexpression of DAPK1 promoted A549 cell apoptosis. Collectively, overexpression of DAPK1 and Beclin1 under OGD promoted excessive autophagy and apoptosis in A549 cells. Our study may provide a novel therapeutic target and theoretical basis for NSCLC treatment.</p>","PeriodicalId":100902,"journal":{"name":"MedComm – Oncology","volume":"2 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mog2.30","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50143946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ge-xuan Feng, Meng-jiao Zhou, Lin Cao, Ting-yao Ma, Xue-lian Wang, Ran Gao, Xiao-hong Chen, Lu Kong
{"title":"NKT cells contribute to alleviating lung metastasis in adenoid cystic carcinoma","authors":"Ge-xuan Feng, Meng-jiao Zhou, Lin Cao, Ting-yao Ma, Xue-lian Wang, Ran Gao, Xiao-hong Chen, Lu Kong","doi":"10.1002/mog2.29","DOIUrl":"https://doi.org/10.1002/mog2.29","url":null,"abstract":"<p>Salivary adenoid cystic carcinoma (SACC) with a unique <i>MYB-NFIB</i> fusion has been considered an “immune-cold” tumor, but the mechanisms behind this remain unclear. In this study, we analyzed the immune status of 29 SACC patients and found that most lung metastases exhibited an immunoinflammatory state, in contrast to the primary SACC tissues. Single-cell sequencing data showed that anergic T-cell types were low in primary inflammatory tissues, while inflammatory metastatic lung tissues had elevated levels of anergic CD8<sup>+</sup> natural killer T (NKT)-like cells and low levels of memory T cells. Primary exclusive tissues had high levels of myeloid-derived suppressor cells (MDSCs) and low levels of activated CD8<sup>+</sup> NKT-like cells. These data support the fact that metastatic SACC cells might induce a stronger immune response in the lung. Additionally, an in vivo experiment showed that a minimally invasive SACC cell line with higher expression of human leukocyte antigens -B and -C induced NKT cell activation in mice and effectively attenuated the incidence of lung metastases caused by a highly invasive SACC cell line. This suggests that NKT therapy may be active in treating SACC lung metastasis. Conclusively, this study sheds light on the immune microenvironment of SACC and highlights the potential of NKT-based therapy.</p>","PeriodicalId":100902,"journal":{"name":"MedComm – Oncology","volume":"2 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mog2.29","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50133264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Identification of pyroptosis-related clusters for prediction of overall survival and characterization of tumor microenvironment infiltration in laryngeal squamous cell carcinoma","authors":"Wei Du, Xueming Xia, Jiayun Yu, Bin Shao","doi":"10.1002/mog2.26","DOIUrl":"https://doi.org/10.1002/mog2.26","url":null,"abstract":"<p>Laryngeal squamous cell carcinoma (LSCC) accounts for one-third of head and neck squamous carcinoma (HNSCC). Although improvements have been made in treatments, the prognosis of patients with LSCC is unsatisfactory. Pyroptosis creates an environment that inhibits tumor growth in various cancers, but pyroptosis regulation in the tumor immune microenvironment in LSCC remains little known. The Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases were used to collect clinical traits and gene expression data of LSCC patients. We present a systematic overview of the immune microenvironment of LSCC based on genetics and transcriptional profiles of pyroptosis-related genes (PRGs) and divide 220 LSCC into three distinct PRGclusters. Based on the three survival-related PRGs identified in Lasso-penalized Cox regression, samples from the training and validation cohorts were divided into two discrete geneClusters. We construct a prognostic model based on Risk score, quantify pyroptosis level and link it with patient outcome. Furthermore, we verified the expression level of one prognostic gene Basic Leucine Zipper ATF-Like Transcription Factor at the tissue level in the validation experiment. These findings reveal the crucial role of pyroptosis and can assist in predicting patient prognosis, guiding optimal treatment choices, and developing new immunotherapies for LSCC.</p>","PeriodicalId":100902,"journal":{"name":"MedComm – Oncology","volume":"2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mog2.26","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50141289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fangxue Du, Ruiqian Guo, Ziyan Feng, Ziyao Wang, Xi Xiang, Bihui Zhu, Raul D. Rodriguez, Li Qiu
{"title":"Precision gas therapy by ultrasound-triggered for anticancer therapeutics","authors":"Fangxue Du, Ruiqian Guo, Ziyan Feng, Ziyao Wang, Xi Xiang, Bihui Zhu, Raul D. Rodriguez, Li Qiu","doi":"10.1002/mog2.27","DOIUrl":"https://doi.org/10.1002/mog2.27","url":null,"abstract":"<p>In recent years, ultrasound, as an external stimuli that can activate different types of naonocatalysts for therapy, has attracted extensive attention. One characteristic that makes ultrasound a particularly attractive trigger stimulus for nanomedicine is that it can be applied to the deep regions of the body noninvasively in a focused way. Different biological effects can be achieved by integrating ultrasound with nanocatalysts, and nanodroplets. Gas therapy, as a green antitumor treatment, has attracted substantial attention. The development of nanotechnology and nanomedicine has made gas therapy more precious by controlled release under internal, and outside factors and targeted delivery. In this article, an overview of ultrasound-based gas therapy on antitumor therapy has been provided. First, we explored the mechanism of ultrasound-triggered gas release. Second, we list the common gas release pathways and their mechanism in response to ultrasound activity. Third, exemplary instances of gas-generating facilities under ultrasound controllable are explored, with an emphasis on their originality and guiding principles. The impact of the gas-generating platform as a tumor therapy has also been considered. Finally, the difficulties and future prospects for this effective therapeutic approach are examined.</p>","PeriodicalId":100902,"journal":{"name":"MedComm – Oncology","volume":"2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mog2.27","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50139143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}