{"title":"Identification of pyroptosis-related clusters for prediction of overall survival and characterization of tumor microenvironment infiltration in laryngeal squamous cell carcinoma","authors":"Wei Du, Xueming Xia, Jiayun Yu, Bin Shao","doi":"10.1002/mog2.26","DOIUrl":"https://doi.org/10.1002/mog2.26","url":null,"abstract":"<p>Laryngeal squamous cell carcinoma (LSCC) accounts for one-third of head and neck squamous carcinoma (HNSCC). Although improvements have been made in treatments, the prognosis of patients with LSCC is unsatisfactory. Pyroptosis creates an environment that inhibits tumor growth in various cancers, but pyroptosis regulation in the tumor immune microenvironment in LSCC remains little known. The Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases were used to collect clinical traits and gene expression data of LSCC patients. We present a systematic overview of the immune microenvironment of LSCC based on genetics and transcriptional profiles of pyroptosis-related genes (PRGs) and divide 220 LSCC into three distinct PRGclusters. Based on the three survival-related PRGs identified in Lasso-penalized Cox regression, samples from the training and validation cohorts were divided into two discrete geneClusters. We construct a prognostic model based on Risk score, quantify pyroptosis level and link it with patient outcome. Furthermore, we verified the expression level of one prognostic gene Basic Leucine Zipper ATF-Like Transcription Factor at the tissue level in the validation experiment. These findings reveal the crucial role of pyroptosis and can assist in predicting patient prognosis, guiding optimal treatment choices, and developing new immunotherapies for LSCC.</p>","PeriodicalId":100902,"journal":{"name":"MedComm – Oncology","volume":"2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mog2.26","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50141289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fangxue Du, Ruiqian Guo, Ziyan Feng, Ziyao Wang, Xi Xiang, Bihui Zhu, Raul D. Rodriguez, Li Qiu
{"title":"Precision gas therapy by ultrasound-triggered for anticancer therapeutics","authors":"Fangxue Du, Ruiqian Guo, Ziyan Feng, Ziyao Wang, Xi Xiang, Bihui Zhu, Raul D. Rodriguez, Li Qiu","doi":"10.1002/mog2.27","DOIUrl":"https://doi.org/10.1002/mog2.27","url":null,"abstract":"<p>In recent years, ultrasound, as an external stimuli that can activate different types of naonocatalysts for therapy, has attracted extensive attention. One characteristic that makes ultrasound a particularly attractive trigger stimulus for nanomedicine is that it can be applied to the deep regions of the body noninvasively in a focused way. Different biological effects can be achieved by integrating ultrasound with nanocatalysts, and nanodroplets. Gas therapy, as a green antitumor treatment, has attracted substantial attention. The development of nanotechnology and nanomedicine has made gas therapy more precious by controlled release under internal, and outside factors and targeted delivery. In this article, an overview of ultrasound-based gas therapy on antitumor therapy has been provided. First, we explored the mechanism of ultrasound-triggered gas release. Second, we list the common gas release pathways and their mechanism in response to ultrasound activity. Third, exemplary instances of gas-generating facilities under ultrasound controllable are explored, with an emphasis on their originality and guiding principles. The impact of the gas-generating platform as a tumor therapy has also been considered. Finally, the difficulties and future prospects for this effective therapeutic approach are examined.</p>","PeriodicalId":100902,"journal":{"name":"MedComm – Oncology","volume":"2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mog2.27","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50139143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ao Du, Zhen Wang, Tengda Huang, Shuai Xue, Chuang Jiang, Guoteng Qiu, Kefei Yuan
{"title":"Fatty acids in cancer: Metabolic functions and potential treatment","authors":"Ao Du, Zhen Wang, Tengda Huang, Shuai Xue, Chuang Jiang, Guoteng Qiu, Kefei Yuan","doi":"10.1002/mog2.25","DOIUrl":"https://doi.org/10.1002/mog2.25","url":null,"abstract":"<p>Lipid metabolic reprogramming is one of the important metabolic characteristics of cancer cells. As major components of lipids, fatty acids provide energy and material basis for cancer cell survival. Abnormal fatty acid metabolism has been found in many cancers. Fatty acid uptake, transport, and synthesis are closely related to the pathogenesis of cancer. Meanwhile, fatty acid changes in the membrane structure of cancer cells and signal transduction mediated by signaling lipids are also helping cancer cells survive in the changing microenvironment. Some of these enzymes and metabolites involved in fatty acid metabolism are emerging as unique cancer biomarkers. Multiple studies have shown that disordered fatty acids can regulate tumor cell proliferation, metastasis, and drug resistance. Therefore, targeting fatty acid metabolism has become a promising treatment strategy. Here, we mainly present metabolic alterations of fatty acids, the basic components of lipids, in cancer. We discuss the cancer treatment based on fatty acid and fatty acid metabolism. These may provide a basis for a better understanding of lipid metabolic reprogramming in cancer, and also provide new ideas for cancer biomarker search, drug development, and combination therapy.</p>","PeriodicalId":100902,"journal":{"name":"MedComm – Oncology","volume":"2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mog2.25","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50127649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jingjing Su, Abhimanyu Thakur, Guangzhao Pan, Jianglong Yan, Isha Gaurav, Sudha Thakur, Zhijun Yang, Alma Cili, Kui Zhang
{"title":"Morus alba derived Kuwanon-A combined with 5-fluorouracil reduce tumor progression via synergistic activation of GADD153 in gastric cancer","authors":"Jingjing Su, Abhimanyu Thakur, Guangzhao Pan, Jianglong Yan, Isha Gaurav, Sudha Thakur, Zhijun Yang, Alma Cili, Kui Zhang","doi":"10.1002/mog2.24","DOIUrl":"https://doi.org/10.1002/mog2.24","url":null,"abstract":"<p>Despite the application of conventional strategies including chemotherapy, radiotherapy, surgery, or immunotherapy, the mortality of gastric cancer (GC) patients remains high. Often, GC is not diagnosed until it has reached late stage, resulting in a missed surgical window. Therefore, a new therapeutic intervention for GC is necessary. Here, the combined application of Kuwanon-A (KA) and 5-fluorouracil (5-FU) was evaluated for its potential to combat GC for the first time. To determine the anticancer activity of KA (from <i>Morus alba</i>) along with 5-FU against GC, and their mechanism via GADD153, we examained anticancer potential of KA along with 5-FU via in vitro assays with GC cells, namely MKN-45, SGC-7901, HGC-27, and BGC-823, and in vivo assays with mouse xenograft of GC. KA alone could induce G2/M phase arrest and apoptosis in GC cells by activating GADD153 through the PERK/elF2α/ATF4 and IRE1/XBP1 signaling pathways, suggesting a critical role of increased endoplasmic reticulum stress in KA-induced apoptosis of GC cells. Moreover, the combination of KA and 5-FU showed an enhanced synergistic anticancer effect against GC both in vitro and in vivo. Conclusively, the combination of KA and 5-FU can act as an effective anticancer regimen in combating GC.</p>","PeriodicalId":100902,"journal":{"name":"MedComm – Oncology","volume":"2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mog2.24","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50137825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Insight on the cellular and molecular basis of blood vessel formation: A specific focus on tumor targets and therapy","authors":"Nimish Mol Stephen, Udayawara Rudresh Deepika, Tehreem Maradagi, Tatsuya Sugawara, Takashi Hirata, Ponesakki Ganesan","doi":"10.1002/mog2.22","DOIUrl":"https://doi.org/10.1002/mog2.22","url":null,"abstract":"<p>The cellular and molecular switches that govern angiogenesis are considered therapeutic targets for several diseases like tumors and atherosclerosis. Thus, understanding the detailed molecular mechanisms underlying the formation of the new blood vessel is essential for developing novel therapeutic strategies. The formation of a new blood vessel (angiogenesis) is tightly regulated by balancing pro- and antiangiogenic molecules. Dysregulated angiogenesis contributes to the pathogenicity of several diseases, including tumors associated with uncontrolled vessel growth. Experimental and clinical studies emphasize that angiogenesis is a critical step for the transition of the tumor to a life-threatening malignancy. In recent years, angiogenesis has been targeted as one of the primary therapeutic goals for treating tumors, and rapid progress has been made by modulating its molecular regulators. Hence, the mechanisms of how blood vessel formation occurs could provide molecular insight into future angiogenic therapy. This review summarizes briefly the molecular players of blood vessel formation comprising vasculogenesis and angiogenesis and their role in tumor progression alongside antiangiogenic therapy.</p>","PeriodicalId":100902,"journal":{"name":"MedComm – Oncology","volume":"2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mog2.22","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50124915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Oncolytic virotherapy using neural stem cells as a novel treatment option for glioblastoma multiforme","authors":"Tanvir Ahmed","doi":"10.1002/mog2.23","DOIUrl":"https://doi.org/10.1002/mog2.23","url":null,"abstract":"<p>The most deadly and aggressive form of brain cancer is called a glioblastoma multiforme. Following diagnosis, the median duration of survival is only 14 months. It is imperative to develop cutting-edge therapeutic options because the results of conventional treatments are so poor. Replication-competent oncolytic viruses and replication-deficient viral vectors can be used to treat malignant tumors, an idea that has been around for more than a century. Cancer cells can be eliminated by any class. Oncolytic viruses are created with the specific purpose of locating, attacking, and multiplying in cancerous cells while bypassing normal brain tissue. Because of this, the viruses can kill tumors while protecting healthy brain cells. Getting the oncolytic virus reach tumor locations where it is needed is the biggest challenge. If neural stem cells were used as carrier cells to deliver oncolytic viruses to the right tumor locations, glioblastoma multiforme virotherapy will be significantly more efficient. The most recent advancements in the field of utilizing neural stem cells to deliver oncolytic viruses into glioblastoma tumors are the main focus of this review.</p>","PeriodicalId":100902,"journal":{"name":"MedComm – Oncology","volume":"2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mog2.23","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50156065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yaomei Tian, Qieyue Hu, Rui Zhang, Bailing Zhou, Daoyuan Xie, Yuanda Wang, Li Yang
{"title":"Combining an adenovirus encoding human endostatin and PD-1 blockade enhanced antitumor immune activity","authors":"Yaomei Tian, Qieyue Hu, Rui Zhang, Bailing Zhou, Daoyuan Xie, Yuanda Wang, Li Yang","doi":"10.1002/mog2.21","DOIUrl":"https://doi.org/10.1002/mog2.21","url":null,"abstract":"<p>Treatment with immune checkpoint inhibitors (ICIs) has recently achieved unprecedented clinical benefits, becoming a critical treatment for patients with cancer. However, a set of patients are resistant to immune checkpoint inhibitor therapy, likely due to the limited presence or lack of tumor-infiltrating lymphocytes in their tumors. Increasing data indicate that antiangiogenic therapy substantially reduces cancer-induced immunosuppression and is an effective way to enhance the efficacy of cancer immunotherapies by combination with ICIs. Endostatin, an angiogenesis inhibitor, has been widely used as an antiangiogenic therapy for cancer. We showed that combined therapy with an adenovirus encoding human endostatin, named Ad-E, and programmed cell death-1 (PD-1) blockade dramatically abrogated tumor growth, inhibited microvessel density, and promoted tumor apoptosis, compared to treatment with the single agents. Further investigation using flow cytometry showed that combined therapy significantly increased CD8<sup>+</sup> T-cell infiltration into tumors and promoted the level of CD8<sup>+</sup> IFN-γ<sup>+</sup> T cells. Moreover, combined therapy effectively reduced the frequencies of CD11b<sup>+</sup> F4/80<sup>+</sup> tumor-associated macrophages (TAMs) and slightly increased M1/M2 ratio in the tumors. RNA-seq analysis of tumor tissue following combined therapy also demonstrated upregulated expression of genes associated with the antitumor immune response. These data support the rationale for combining antiangiogenic and ICIs for cancer therapy.</p>","PeriodicalId":100902,"journal":{"name":"MedComm – Oncology","volume":"2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mog2.21","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50142850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yasar Ahmed, Thamir Mahgoub, Maha Al Sindi, José J. Berenguer-Pina
{"title":"New era for emerging therapeutic targeting human epidermal growth factor receptor 3 (HER 3) in advanced nonsmall cell lung cancer and metastatic breast cancer","authors":"Yasar Ahmed, Thamir Mahgoub, Maha Al Sindi, José J. Berenguer-Pina","doi":"10.1002/mog2.19","DOIUrl":"10.1002/mog2.19","url":null,"abstract":"<p>Human epidermal growth factor receptor 3 (HER3) is a member of the transmembrane receptor tyrosine kinase family. Upregulation of HER3 pathway has been implicated as a mechanism of resistance in solid tumors, particularly in estrogen receptor positive, HER2 positive breast cancer and epidermal growth factor (EGFR) mutant nonsmall cell lung cancer. Several studies suggest that HER3 overexpression represents a negative prognostic biomarker associated with poor survival. Preclinical and clinical studies of anti-HER3 investigational therapies suggest that expression of the HER3 ligand, neuregulin, may predict response to treatment. Despite its emergence as a key cancer therapeutic target, HER3 cannot be targeted with traditional tyrosine kinase inhibitors therapy due to its weak kinase activity. Monoclonal and bispecific antibodies targeting HER3 have been developed and tested in early phase trials. Objective responses were limited when first-generation HER3-specific monoclonal antibodies were investigated as monotherapies in phase 1 and 2 clinical trials for nonsmall cell lung cancer (NSCLC) and metastatic breast cancer (MBC). MBC and NSCLC HER3 specific antibody-drug conjugates have shown encouraging results in resistance in cancer cells, particularly in those that overexpress HER3. These agents have shown some promise in early phase trials in both NSCLC and MBC setting in heavily pretreated patients with varying degrees of response. It is unclear which subgroup of patients will truly benefit from targeting HER3 as these therapies are under investigation.</p>","PeriodicalId":100902,"journal":{"name":"MedComm – Oncology","volume":"1 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mog2.19","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78116178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Establishment and verification of a radiomics nomogram to predict distant metastasis in patients with descending type of nasopharyngeal carcinoma","authors":"Qin Yang, Yu Chen, Rui Huang, Wenya Yin, Shuang Zhang, Qianlong Tang, Xinyue Chen, Jinyi Lang, Gang Yin, Peng Zhang","doi":"10.1002/mog2.20","DOIUrl":"10.1002/mog2.20","url":null,"abstract":"<p>Distant metastasis is one of the main reasons for the failure of nasopharyngeal carcinoma (NPC) treatment, and descending type of nasopharyngeal carcinoma (type D NPC) is more prone to distant metastasis. Few people have explored the relationship between the radiomics characteristics of lymph nodes and the distant metastasis of type D NPC. Therefore, we establish a nomogram based on radiomics risk factors to predict distant metastasis in patients with type D NPC. This study retrospectively included 144 type D NPC (T1-2N2-3MO, AJCC 8th). 2600 features were extracted each from CT and MRI examinations conducted before treatment, respectively. Feature selection was performed by least absolute shrinkage and selection operator regression. A binary logistic regression model was used to construct a nomogram, and the C-index and calibration curve were used to evaluate the discrimination and accuracy of the nomogram. Combining CT and MRI radiomics features with a multimodal radiomics model, the average area under curve of the synthetic minority oversampling technique (SMOTE) data set was 0.873 (95% confidence interval [CI]: 0.797–0.949). The C-index in the training and validation sets of the original data set were 0.91 (95% CI: 0.848–0.972) and 0.815 (95% CI: 0.664–0.967); the sensitivity were 0.75 and 0.545, the specificity were 0.932 and 0.903, and the accuracy were 0.882 and 0.81. Therefore, we concluded that the multimodal radiomics model in predicting distant metastasis in descending type of NPC patients was good. The proposed model can provide a reference for precise treatment and prognosis prediction.</p>","PeriodicalId":100902,"journal":{"name":"MedComm – Oncology","volume":"1 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mog2.20","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84823767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shu Rui, Xiangyu Kong, Jiaye Liu, Liying Wang, Xiaofei Wang, Xiuhe Zou, Xun Zheng, Feng Ye, Heng Xu, Zhihui Li, Han Luo
{"title":"The landscape of TIGIT target and clinical application in diseases","authors":"Shu Rui, Xiangyu Kong, Jiaye Liu, Liying Wang, Xiaofei Wang, Xiuhe Zou, Xun Zheng, Feng Ye, Heng Xu, Zhihui Li, Han Luo","doi":"10.1002/mog2.18","DOIUrl":"10.1002/mog2.18","url":null,"abstract":"<p>Immune checkpoint blockade has dramatically altered the concept of cancer therapeutics over the past few years. Beyond the existing classical pathways, novel immune checkpoints, such as T-cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif (ITIM) structural domain (TIGIT), have also emerged in recent years and have promising therapeutic potential. Recent researches have provided ample evidence that TIGIT is extensively involved in various cancerous and noncancerous diseases such as chronic inflammation, autoimmune diseases, abnormal pregnancy status, and most recently coronavirus disease 2019. In contrast to the programmed cell death receptor 1 pathway which primarily affects T-cell function, targeting TIGIT pathway regulates multiple types of immunocytes but has fewer immune-related adverse events. Owing to its unique advantages and extensive involvement in diseases, extensive clinical trials blockade TIGIT or combine it with other targets are ongoing, and numerous phase II clinical trials have already seen promising results. In this review, we summarized the existing research on TIGIT in various diseases and discussed the perspective and challenges related to targeting this molecular for therapy, with an attempt to provide directions for subsequent studies.</p>","PeriodicalId":100902,"journal":{"name":"MedComm – Oncology","volume":"1 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mog2.18","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88716740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}