Bachir Yaou Balarabe , Yerkanat N. Kanafin , Kuralay Rustembekkyzy , Imanzhussip Serkul , Meruert A. Nauryzbaeva , Timur Sh. Atabaev
{"title":"Assessing the photocatalytic activity of visible light active Bi2S3-based nanocomposites for Methylene Blue and Rhodamine B degradation","authors":"Bachir Yaou Balarabe , Yerkanat N. Kanafin , Kuralay Rustembekkyzy , Imanzhussip Serkul , Meruert A. Nauryzbaeva , Timur Sh. Atabaev","doi":"10.1016/j.mtcata.2025.100099","DOIUrl":"10.1016/j.mtcata.2025.100099","url":null,"abstract":"<div><div>High levels of organic compounds, notably synthetic dyes like Methylene blue (MB) and Rhodamine B (RhB), in untreated effluents have become a major environmental concern, endangering human health and ecosystems. These dyes are difficult to remove due to their non-biodegradable nature, prompting extensive research in this area. Photocatalysis has emerged as a promising, environmentally friendly method that only requires a light source and a photocatalyst for pollutant degradation. Bismuth sulfide (Bi<sub>2</sub>S<sub>3</sub>) stands out among other photocatalytic materials due to its narrow band gap, strong light absorption in the visible range, and nontoxicity, making it a good candidate to improve the overall photocatalytic efficiency. Therefore, this review article focuses on recent advances in Bi<sub>2</sub>S<sub>3</sub>-based nanocomposites and their role in the effective degradation of organic pollutants, particularly MB and RhB, through enhanced photocatalytic mechanisms.</div></div>","PeriodicalId":100892,"journal":{"name":"Materials Today Catalysis","volume":"9 ","pages":"Article 100099"},"PeriodicalIF":0.0,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143839610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gongyue Dong , Xiaojuan Guo , Cheng Cheng , Feng Chen , Jinfeng Zhang , Yanping Du , Wei Meng , Maochang Liu , Jinwen Shi
{"title":"Constructing electron transport channel of SnO2/BaSO4 on g-C3N4 for enhanced visible-light-driven photocatalytic H2 production","authors":"Gongyue Dong , Xiaojuan Guo , Cheng Cheng , Feng Chen , Jinfeng Zhang , Yanping Du , Wei Meng , Maochang Liu , Jinwen Shi","doi":"10.1016/j.mtcata.2025.100098","DOIUrl":"10.1016/j.mtcata.2025.100098","url":null,"abstract":"<div><div>Graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>) is confronted with the issue of poor utilization of photogenerated charge carriers, thereby leading to limited performance of photocatalytic hydrogen (H<sub>2</sub>) production, which restricts its potential application. Herein, the electron transport material SnO<sub>2</sub>/BaSO<sub>4</sub> was synthesized to integrate with g-C<sub>3</sub>N<sub>4</sub> for addressing the above problem. Various characterizations were conducted to investigate the g-C<sub>3</sub>N<sub>4</sub>-SnO<sub>2</sub>/BaSO<sub>4</sub> photocatalyst, and it demonstrated that photogenerated electrons from g-C<sub>3</sub>N<sub>4</sub> expeditiously migrate to SnO<sub>2</sub>/BaSO<sub>4</sub> nanoparticles, which markedly hindered photogenerated carriers’ recombination. Subsequently, the g-C<sub>3</sub>N<sub>4</sub>-SnO<sub>2</sub>/BaSO<sub>4</sub> photocatalyst demonstrated promoted photocatalytic H<sub>2</sub> production at a rate of 14.2 μmol h<sup>−1</sup> under visible-light illumination, which was 2.5 times higher than that of pristine g-C<sub>3</sub>N<sub>4</sub>.</div></div>","PeriodicalId":100892,"journal":{"name":"Materials Today Catalysis","volume":"9 ","pages":"Article 100098"},"PeriodicalIF":0.0,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143725196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M.A. Rodriguez-Olguin , D. Cazac , F. Ruiz-Zepeda , S. Bartling , M. Bosco , H. Atia , R. Eckelt , A. Manzo-Robledo , M. Vandichel , A. Aguirre , J.G.E. Gardeniers , A. Susarrey-Arce
{"title":"Improved low-temperature CO oxidation using heterogeneous nanofibrous structures decorated with Pd atoms and nanocrystals","authors":"M.A. Rodriguez-Olguin , D. Cazac , F. Ruiz-Zepeda , S. Bartling , M. Bosco , H. Atia , R. Eckelt , A. Manzo-Robledo , M. Vandichel , A. Aguirre , J.G.E. Gardeniers , A. Susarrey-Arce","doi":"10.1016/j.mtcata.2025.100093","DOIUrl":"10.1016/j.mtcata.2025.100093","url":null,"abstract":"<div><div>Amorphous alumina shaped as nanofibers forming a non-woven network, functioning as a heterogeneous dispersion for palladium (Pd) atoms and nanocrystals, is unique yet unstudied for low-temperature CO oxidation. This work demonstrates that nanometric-size alumina fibers (ANFs) with a surface area of ⁓230 m<sup>2</sup>/g can host Pd species that remain nearly intact after CO oxidation. The ANFs contain various Pd (Pd-ANFs) loadings, ranging from 1 %wt. (Pd1-ANFs), 3 %wt. (Pd3-ANFs), to 5 %wt. (Pd5-ANFs). Among them, Pd3-ANFs show the highest CO chemisorption. Hence, the chemical environment of the Pd3-ANFs is assessed using NAP-XPS under various CO and O<sub>2</sub> mixtures. NAP-XPS shows the presence of metallic and oxidized Pd species. The results are correlated with DRIFT spectroscopy, which unveils the CO species adsorbed over Pd. Furthermore, a computational-based kinetic model for CO oxidation shows that Pd single atoms start the CO-oxidation, followed by larger Pd crystals during light-off. Our results demonstrate that the Pd-ANFs have higher activity when compared with the Pd alumina nanoparticles (Pd-ANP) counterpart that lacks a fibrous structure, highlighting the benefits of the ANF's structural network in stabilizing atomic and nanometric scale metal catalysts for low-temperature CO oxidation.</div></div>","PeriodicalId":100892,"journal":{"name":"Materials Today Catalysis","volume":"9 ","pages":"Article 100093"},"PeriodicalIF":0.0,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143629486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ambient urea synthesis via electrocatalytic C–N coupling","authors":"Chen Chen","doi":"10.1016/j.mtcata.2025.100092","DOIUrl":"10.1016/j.mtcata.2025.100092","url":null,"abstract":"<div><div>The construction of C–N bond and synthesis of N-containing compounds directly from N<sub>2</sub> is an extremely attractive subject. The co-electrolysis system coupled with renewable electricity provides one of the potential options for the green and controllable C–N bond construction under ambient conditions, bypassing the intermediate process of ammonia synthesis. In this review, we have summarized the recent progress in ambient urea synthesis via electrocatalytic C–N coupling from CO<sub>2</sub> and nitrogenous species. The reaction mechanisms studies of N<sub>2</sub> and CO<sub>2</sub> coupling has been mainly highlighted, and the coupling enhancement strategies are emphasized for the coupling of nitrate and CO<sub>2</sub>, including intermediate adsorption regulation, functional synergy, site reconstitution and local-environment construction. Moreover, promising directions and remaining challenges are outlined, encompassing the mechanism study combining theory and experiment, reactant source and product application, optimization of urea synthesis evaluation system and the development of devices aiming to coupling system. This review aims to guide further advancements in electrocatalytic C–N coupling, facilitating the efficient and sustainable synthesis of urea for a broad spectrum of applications.</div></div>","PeriodicalId":100892,"journal":{"name":"Materials Today Catalysis","volume":"8 ","pages":"Article 100092"},"PeriodicalIF":0.0,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143509791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mingxing Nie , Fengyi Liu , Zijian Wang , Wei Gan , Jie Yu , Bin Wu , Qunhui Yuan
{"title":"Facile one-pot surfactant-free synthesis of 3D vertical graphene anchored ultrafine PtCo nanoparticles for ethanol oxidation","authors":"Mingxing Nie , Fengyi Liu , Zijian Wang , Wei Gan , Jie Yu , Bin Wu , Qunhui Yuan","doi":"10.1016/j.mtcata.2025.100094","DOIUrl":"10.1016/j.mtcata.2025.100094","url":null,"abstract":"<div><div>Exploring highly active catalysts with high Pt utilization rates is still challenging for direct ethanol fuel cells (DFECs). Herein, we report a facile synthesis of three-dimensional (3D) vertical graphene (VG) supported PtCo alloy nanoparticles (PtCo/VG) as catalysts for ethanol oxidation reactions (EOR). The 3D interconnected open network and exposed edges of VG nanosheets provide an ideal support for hindering the aggregation of PtCo nanoparticles and thus the PtCo nanoparticles achieve an ultrasmall size of 3.7 nm and a high dispersion on VG supports. PtCo/VG displays a superb mass activity (4.33 A mg<sup>−1</sup>) and specific activity (5.14 mA cm<sup>−2</sup>) toward EOR, which are 5.6 and 3.5 times to those of commercial Pt/C, respectively. The catalytic activity of PtCo/VG also surpasses its counterparts of carbon fibers supported PtCo (PtCo/CNFs) and XC-72 supported PtCo (PtCo/XC-72), and behaves amazingly among many reported Pt-based catalysts. Density functional theory (DFT) calculations demonstrate that the introduction of VG supports lowered the Pt d-band center, weakened the CO adsorption and strengthened the OH adsorption on catalytic sites of PtCo/VG. This work may pave the way for fabricating highly carbon-based efficient bifunctional electrocatalysts with high platinum utilization for fuel cells.</div></div>","PeriodicalId":100892,"journal":{"name":"Materials Today Catalysis","volume":"8 ","pages":"Article 100094"},"PeriodicalIF":0.0,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143578379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Electrocatalytic synthesis of pure H2O2 from crossover oxygen through a porous proton exchange membrane","authors":"Kazuma Enomoto, Takuya Okazaki, Kosuke Beppu, Fumiaki Amano","doi":"10.1016/j.mtcata.2025.100088","DOIUrl":"10.1016/j.mtcata.2025.100088","url":null,"abstract":"<div><div>Hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) is a valuable chemical, and its eco-friendly electrochemical production has gained attention to obtain pH-neutral aqueous solutions without impurities. However, achieving H<sub>2</sub>O<sub>2</sub> faradaic efficiencies (FEs) above 30 % has been a challenge with conventional proton exchange membrane (PEM) electrolyzers. To enhance H<sub>2</sub>O<sub>2</sub> FE, efficient collection of H<sub>2</sub>O<sub>2</sub> from the catalyst surface using liquid water is necessary, but oxygen diffusion becomes a limiting factor in aqueous-immersed systems. To overcome this, we designed a zero-gap electrolyzer, supplying oxygen gas from the anode side through the membrane to the cathode. A gas flow-through porous PEM was developed by embedding an acidic ionomer into a membrane filter, enabling the crossover oxygen supply to the cathode flooded with water. This porous PEM design facilitated the formation of a three-phase interface at the catalyst, where high-concentration oxygen gas and liquid water interact closely, achieving 79 % H<sub>2</sub>O<sub>2</sub> FE at 5 mA cm<sup>−2</sup>. Continuous synthesis of pure H<sub>2</sub>O<sub>2</sub> solution exceeding 5500 mg L<sup>−1</sup> (0.55 wt%) was sustained for over 50 hours.</div></div>","PeriodicalId":100892,"journal":{"name":"Materials Today Catalysis","volume":"8 ","pages":"Article 100088"},"PeriodicalIF":0.0,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143628382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Facet engineering of Weyl semimetals for efficient hydrogen evolution reaction","authors":"Ting Wai Lau , Qiong Lei , Jun Yin","doi":"10.1016/j.mtcata.2025.100091","DOIUrl":"10.1016/j.mtcata.2025.100091","url":null,"abstract":"<div><div>The design of highly efficient hydrogen evolution reaction (HER) catalysts is a critical challenge in advancing electrochemical water splitting for renewable energy applications. Topological semimetals have recently emerged as promising candidates for HER catalysis; however, the relationship between their topological surface properties and catalytic performance remains poorly understood. Herein, we employ density functional theory (DFT) calculations to investigate the impact of facets on the HER activity of topological TaAs semimetal family (TaAs, NbP, NbAs, and TaP). Our results reveal that topological surface states persist across various facets, and facets with lower coordination numbers exhibit greater stability. Four key theoretical descriptors—Gibbs free energy changes, surface energy, energy barriers for water dissociation, and water adsorption energy—are assessed to provide a comprehensive evaluation of HER activity. For all four compounds, (111) and metal-rich (001) facets exhibit optimal energy values across these metrics, outperforming the benchmark Pt (111). The number of Fermi arcs is found to have a minimal influence on HER activity. Changes in the projected density of states (PDOS) of surface atoms strongly correlate with Δ<em>G</em><sub>H*</sub>, serving as a more effective indicator of HER activity. These findings highlight the importance of a holistic evaluation framework that extends beyond Gibbs free energy changes alone, incorporating multiple factors to identify high-performance catalysts. This work provides new insights into the design principles for topological catalysts in HER and offers valuable guidance for developing next generation of electrocatalysts.</div></div>","PeriodicalId":100892,"journal":{"name":"Materials Today Catalysis","volume":"8 ","pages":"Article 100091"},"PeriodicalIF":0.0,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143420339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kang Huang , Zhixiu Lu , Shilong Dai , Chunyu Cui , Nam Dong Kim , Huilong Fei
{"title":"Coupling cobalt single-atom catalyst with recyclable LiBr redox mediator enables stable LiOH-based Li-O2 batteries","authors":"Kang Huang , Zhixiu Lu , Shilong Dai , Chunyu Cui , Nam Dong Kim , Huilong Fei","doi":"10.1016/j.mtcata.2025.100090","DOIUrl":"10.1016/j.mtcata.2025.100090","url":null,"abstract":"<div><div>Cycling Li-O<sub>2</sub> batteries (LOBs) via LiOH is promising for developing practically viable batteries, while promoting the formation and decomposition of LiOH remains a challenge. Cobalt single atom catalysts (Co-SACs) have been exploited to mediate the direct 4e<sup>−</sup> oxygen reduction reaction for generating LiOH discharge products, but their inferior oxygen evolution activity renders the battery low energy efficiency and poor cycling life. Herein, we for the first time introduce LiBr redox mediator (RM) into the Co-SACs-catalyzed LOB system to facilitate the decomposition of LiOH. In the discharge process, the catalysis of Co-SAC is unaffected with the presence of LiBr. During charging, Br<sub>3</sub><sup>−</sup> is identified as the oxidizer to decompose LiOH at an appropriate potential (3.6 V). Significantly, the soluble Br<sup>−</sup> is recyclable in the system as the BrO<sup>−</sup> intermediate could shuttle to the anode and react with Li metal to regenerate Br<sup>−</sup> so that the generation of LiBrO<sub>3</sub> deposit is circumvented. Consequently, the fabricated LOB demonstrates fewer side reactions, stable energy efficiency (drop rate of 0.10 % per cycle) and long cycle life (300 cycles at 1000 mA/g) under the ambient atmosphere.</div></div>","PeriodicalId":100892,"journal":{"name":"Materials Today Catalysis","volume":"8 ","pages":"Article 100090"},"PeriodicalIF":0.0,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143378854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}