{"title":"直接乙醇燃料电池的电催化性能:单金属、双金属和三金属催化剂的贡献","authors":"Pariksha Bishnoi , Kirti Mishra , Urvashi Sen , Samarjeet Singh Siwal","doi":"10.1016/j.mtcata.2025.100124","DOIUrl":null,"url":null,"abstract":"<div><div>Over the recent past, there has been exponential growth in the advancements of clean energy sources and fuel cell technologies. Fuel cells are the electrochemical devices that are able to convert chemical energy of a fuel into electrical energy. This paper studies the electrocatalytic activity of monometallic, bimetallic, and trimetallic catalysts in direct ethanol fuel cells (DEFCs). Monometallic catalysts, for example, platinum (Pt) and palladium (Pd), along with other transition metals, find application but have complications like poor tolerance to carbon monoxide (CO) and incomplete oxidation of ethanol. Furthermore, bimetallic catalysts, e.g., Pt-Ru and Pt-Sn, have shown significant advancements because of these synergistic enhancements, leading to improved performance, stability, and CO poisoning resistance. Another group of catalysts, trimetallic (e.g., Pt-Ru-Sn), have both high efficiency and long-lasting capabilities, making them stand out as applicable in most DEFC practical scenarios. This research proves the advantage of multi-metallic catalysts in developing the DEFC technology while solving both major factors of catalyst deterioration and their price.</div></div>","PeriodicalId":100892,"journal":{"name":"Materials Today Catalysis","volume":"11 ","pages":"Article 100124"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrocatalytic performance in direct ethanol fuel cells: Contributions of monometallic, bimetallic, and trimetallic catalysts\",\"authors\":\"Pariksha Bishnoi , Kirti Mishra , Urvashi Sen , Samarjeet Singh Siwal\",\"doi\":\"10.1016/j.mtcata.2025.100124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Over the recent past, there has been exponential growth in the advancements of clean energy sources and fuel cell technologies. Fuel cells are the electrochemical devices that are able to convert chemical energy of a fuel into electrical energy. This paper studies the electrocatalytic activity of monometallic, bimetallic, and trimetallic catalysts in direct ethanol fuel cells (DEFCs). Monometallic catalysts, for example, platinum (Pt) and palladium (Pd), along with other transition metals, find application but have complications like poor tolerance to carbon monoxide (CO) and incomplete oxidation of ethanol. Furthermore, bimetallic catalysts, e.g., Pt-Ru and Pt-Sn, have shown significant advancements because of these synergistic enhancements, leading to improved performance, stability, and CO poisoning resistance. Another group of catalysts, trimetallic (e.g., Pt-Ru-Sn), have both high efficiency and long-lasting capabilities, making them stand out as applicable in most DEFC practical scenarios. This research proves the advantage of multi-metallic catalysts in developing the DEFC technology while solving both major factors of catalyst deterioration and their price.</div></div>\",\"PeriodicalId\":100892,\"journal\":{\"name\":\"Materials Today Catalysis\",\"volume\":\"11 \",\"pages\":\"Article 100124\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Catalysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949754X25000377\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949754X25000377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Electrocatalytic performance in direct ethanol fuel cells: Contributions of monometallic, bimetallic, and trimetallic catalysts
Over the recent past, there has been exponential growth in the advancements of clean energy sources and fuel cell technologies. Fuel cells are the electrochemical devices that are able to convert chemical energy of a fuel into electrical energy. This paper studies the electrocatalytic activity of monometallic, bimetallic, and trimetallic catalysts in direct ethanol fuel cells (DEFCs). Monometallic catalysts, for example, platinum (Pt) and palladium (Pd), along with other transition metals, find application but have complications like poor tolerance to carbon monoxide (CO) and incomplete oxidation of ethanol. Furthermore, bimetallic catalysts, e.g., Pt-Ru and Pt-Sn, have shown significant advancements because of these synergistic enhancements, leading to improved performance, stability, and CO poisoning resistance. Another group of catalysts, trimetallic (e.g., Pt-Ru-Sn), have both high efficiency and long-lasting capabilities, making them stand out as applicable in most DEFC practical scenarios. This research proves the advantage of multi-metallic catalysts in developing the DEFC technology while solving both major factors of catalyst deterioration and their price.