La-doped and AgO-loading g-C3N4 heterojunctions for enhanced photocatalytic hydrogen evolution from water splitting

Hafiz Suleman Yaseen , Liu Deng , Li Luo , Johnny Muya Chabu , Syed Aamir Hussain , Wei Wang , Chengcheng Zhang , Rongrong Wang , Yifan Jiang , You-Nian Liu
{"title":"La-doped and AgO-loading g-C3N4 heterojunctions for enhanced photocatalytic hydrogen evolution from water splitting","authors":"Hafiz Suleman Yaseen ,&nbsp;Liu Deng ,&nbsp;Li Luo ,&nbsp;Johnny Muya Chabu ,&nbsp;Syed Aamir Hussain ,&nbsp;Wei Wang ,&nbsp;Chengcheng Zhang ,&nbsp;Rongrong Wang ,&nbsp;Yifan Jiang ,&nbsp;You-Nian Liu","doi":"10.1016/j.mtcata.2025.100111","DOIUrl":null,"url":null,"abstract":"<div><div>Photocatalytic hydrogen evolution through water splitting represents a sustainable approach for green energy generation. Graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>)-based Z-scheme heterostructures have emerged as promising photocatalysts, but their practical applications are fundamentally limited by the persistent challenge of rapid charge recombination at heterointerfaces. To address this critical issue, we develop a novel Z-scheme photocatalyst AgO/La@g-C<sub>3</sub>N<sub>4</sub> (ALCN) through integration of lanthanum-doped g-C<sub>3</sub>N<sub>4</sub> nanosheets with AgO nanoparticles. Comprehensive structural analyses, optical characterization, and electrochemical evaluations confirm the successful construction of p-n heterojunctions with optimized band alignment. The engineered ALCN composite exhibits remarkable electron-hole separation efficiency, achieving an exceptional hydrogen production rate of 16.7 mmol g⁻¹ h⁻¹ under solar light irradiation, which represents a 13-fold, 4-fold, and 2-fold enhancement compared to pristine g-C<sub>3</sub>N<sub>4</sub>, La-doped g-C<sub>3</sub>N<sub>4</sub>, and the composite of La-doped g-C<sub>3</sub>N<sub>4</sub> with Ag<sub>2</sub>O counterparts, respectively. Mechanistic studies reveal that La-doping induces intermediate energy states facilitating charge migration, while the AgO/g-C<sub>3</sub>N<sub>4</sub> heterojunction establishes directional Z-scheme charge transfer pathways. The optimized photocatalyst maintains 92 % activity after 5 cycles, demonstrating superior stability. This work establishes a new paradigm for designing efficient Z-scheme systems through synergistic metal loading and heterojunction engineering.</div></div>","PeriodicalId":100892,"journal":{"name":"Materials Today Catalysis","volume":"10 ","pages":"Article 100111"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949754X25000249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Photocatalytic hydrogen evolution through water splitting represents a sustainable approach for green energy generation. Graphitic carbon nitride (g-C3N4)-based Z-scheme heterostructures have emerged as promising photocatalysts, but their practical applications are fundamentally limited by the persistent challenge of rapid charge recombination at heterointerfaces. To address this critical issue, we develop a novel Z-scheme photocatalyst AgO/La@g-C3N4 (ALCN) through integration of lanthanum-doped g-C3N4 nanosheets with AgO nanoparticles. Comprehensive structural analyses, optical characterization, and electrochemical evaluations confirm the successful construction of p-n heterojunctions with optimized band alignment. The engineered ALCN composite exhibits remarkable electron-hole separation efficiency, achieving an exceptional hydrogen production rate of 16.7 mmol g⁻¹ h⁻¹ under solar light irradiation, which represents a 13-fold, 4-fold, and 2-fold enhancement compared to pristine g-C3N4, La-doped g-C3N4, and the composite of La-doped g-C3N4 with Ag2O counterparts, respectively. Mechanistic studies reveal that La-doping induces intermediate energy states facilitating charge migration, while the AgO/g-C3N4 heterojunction establishes directional Z-scheme charge transfer pathways. The optimized photocatalyst maintains 92 % activity after 5 cycles, demonstrating superior stability. This work establishes a new paradigm for designing efficient Z-scheme systems through synergistic metal loading and heterojunction engineering.
la掺杂和ago负载的g-C3N4异质结增强光催化水裂解析氢
通过水裂解光催化析氢是一种可持续的绿色能源生产方法。基于石墨氮化碳(g-C3N4)的z型异质结构已经成为一种很有前途的光催化剂,但其实际应用从根本上受到异质界面快速电荷重组的持续挑战的限制。为了解决这一关键问题,我们通过将掺杂镧的g-C3N4纳米片与AgO纳米颗粒集成,开发了一种新型Z-scheme光催化剂AgO/La@g-C3N4 (ALCN)。综合结构分析、光学表征和电化学评价证实了p-n异质结的成功构建。经过改造的ALCN复合材料表现出了显著的电子空穴分离效率,在太阳光线照射下,其产氢率达到16.7 mmol g⁻¹ h⁻¹ ,与原始g- c3n4、la掺杂g- c3n4和la掺杂g- c3n4与Ag2O的复合材料相比,分别提高了13倍、4倍和2倍。机理研究表明,la掺杂诱导中间能态有利于电荷迁移,而AgO/g-C3N4异质结建立了定向Z-scheme电荷转移途径。优化后的光催化剂在5次循环后保持92 %的活性,表现出优异的稳定性。这项工作为通过协同金属加载和异质结工程设计高效的Z-scheme系统建立了一个新的范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信