{"title":"Mitigated carrier saturation of facilitated transport membranes for decarbonizing dilute CO2 sources: An experimental and techno-economic study","authors":"Yang Han , W.S. Winston Ho","doi":"10.1016/j.memlet.2022.100014","DOIUrl":"10.1016/j.memlet.2022.100014","url":null,"abstract":"<div><p>The CO<sub>2</sub>/N<sub>2</sub> separation performances of facilitated transport membranes (FTMs) containing aminoacid salts as mobile carriers were characterized under dilute feed gases with 0.05–20% CO<sub>2</sub>. At a reduced CO<sub>2</sub> partial pressure, the carrier saturation in the FTMs was mitigated, which enhanced both the CO<sub>2</sub> permeance and CO<sub>2</sub>/N<sub>2</sub> selectivity. The best FTM containing 2-(1-piperazinyl)ethylamine sarcosinate exhibited an uprising CO<sub>2</sub> permeance from 1968 to 3822 GPU and an improved CO<sub>2</sub>/N<sub>2</sub> selectivity from 249 to 472 with reducing CO<sub>2</sub> content from 1% to 0.1%. The feasibility of this FTM is exemplified by designing a two-stage enriching membrane cascade to further remove 90% of the CO<sub>2</sub> in a residual coal flue gas containing 1.75% CO<sub>2</sub>. Techno-economic analysis indicates a low capture cost of $83.8/tonne. The marginal costs beyond 90% capture are also evaluated for a variety of residual flue gases, indicating that the FTM-based capture from the coal or cement plant residual flue gas is more cost effective than direct air capture.</p></div>","PeriodicalId":100805,"journal":{"name":"Journal of Membrane Science Letters","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772421222000022/pdfft?md5=bc23429ddfd6e399497e81a45c762e84&pid=1-s2.0-S2772421222000022-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79170267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ekanem E. Ekanem , Ainur Sabirova , Ciarán Callaghan , Janet L. Scott , Karen J. Edler , Suzana P. Nunes , Davide Mattia
{"title":"Production of sub-10 micrometre cellulose microbeads using isoporous membranes","authors":"Ekanem E. Ekanem , Ainur Sabirova , Ciarán Callaghan , Janet L. Scott , Karen J. Edler , Suzana P. Nunes , Davide Mattia","doi":"10.1016/j.memlet.2022.100024","DOIUrl":"https://doi.org/10.1016/j.memlet.2022.100024","url":null,"abstract":"<div><p>The production of sub-10 µm cellulose microbeads via membrane emulsification using isoporous membranes is reported here for the first time. Poly(ethylene terephthalate) membranes, with defined interpore distances, pore diameters and straight-through pores were fabricated via photolithography. A dispersed phase of 8 wt% cellulose solution was extruded through the membrane pores, forming, due to shear provided by an overhead stirrer, cellulose solution droplets dispersed in a continuous phase composed of 2 wt% and 5 wt% Span in sunflower oil. Upon phase inversion with ethanol, sub-10 µm microbeads with a coefficient of variation (CV) < 45 % were produced by exploring the Weber number (<em>We<sub>d</sub></em>) - Capillary number (<em>Ca<sub>c</sub></em>) emulsion generation space.</p><p>These results show that sub-10 µm cellulose microbeads can be produced using isoporous polymer membranes fabricated via photolithography, for use in a wide range of applications in the personal care, food and drug industries.</p></div>","PeriodicalId":100805,"journal":{"name":"Journal of Membrane Science Letters","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772421222000125/pdfft?md5=a836311ad3b698ebd8427c4ebe27a759&pid=1-s2.0-S2772421222000125-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"137290593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yunfei Xing, Yunlong Xue, Dujian Qin, Pengbo Zhao, Pei Li
{"title":"Microwave-induced ultrafast crosslinking of Poly (vinyl alcohol) blended with nanoparticles as wave absorber for pervaporation desalination","authors":"Yunfei Xing, Yunlong Xue, Dujian Qin, Pengbo Zhao, Pei Li","doi":"10.1016/j.memlet.2022.100021","DOIUrl":"10.1016/j.memlet.2022.100021","url":null,"abstract":"<div><p>Although pervaporation (PV) membranes based on crosslinked polyvinyl alcohol (PVA) exhibit high desalination performance, the thermal crosslinking process often takes several hours. Here, we report a microwave assisted method to reduce the crosslinking duration. Moreover, to the PVA crosslinking system, a MOF particle, UIO-66, was added to increase the microwave absorbing efficiency and improve the desalination property. As a result, the PVA crosslinking time decreased to 2 min and the water flux increased by 67% compared with the plain crosslinked PVA membrane.</p></div>","PeriodicalId":100805,"journal":{"name":"Journal of Membrane Science Letters","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772421222000095/pdfft?md5=93f3085409a2bcd177baa3b033d87c3b&pid=1-s2.0-S2772421222000095-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87479614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anh Q. Nguyen, Luong N. Nguyen, Md Abu Hasan Johir, Huu Hao Ngo, Long D. Nghiem
{"title":"Linking endogenous decay and sludge bulking in the microbial community to membrane fouling at sub-critical flux","authors":"Anh Q. Nguyen, Luong N. Nguyen, Md Abu Hasan Johir, Huu Hao Ngo, Long D. Nghiem","doi":"10.1016/j.memlet.2022.100023","DOIUrl":"10.1016/j.memlet.2022.100023","url":null,"abstract":"<div><p>This study examined membrane fouling and associated microbial taxa in a membrane bioreactor operating at a sub-critical flux condition using next-generation amplicon sequencing. The membrane was operated at a sub-critical flux, thus, fouling was not observed until endogenous decay. The observed fouling could be attributed to endogenous decay which was driven by nutrient deficiency at high sludge age and low food-to-microorganisms ratio (decreasing from 0.15 to 0.09 gBOD/gMLVSS.d). Endogenous decay resulted in a sharp decrease of the number of species and evenness between different species (49.7 and 58.9% compared to the inoculum, respectively). The release of dissolved organic matters and cell debris from endogenous decay as well as the excessive growth of filamentous bacteria, e.g. <em>Thiotrichales</em> were the main contributors to membrane fouling. The relative abundance of <em>Thiotrichales</em> significantly correlated with TMP (Pearson R = 0.996, <em>p</em>-value <0.001), indicating this order's contribution to membrane fouling. Other dominant orders in the mixed liquor after endogenous decay such as <em>Rhizobiales, Burkholderiales, Rhodospirillales</em> and <em>Myxococcales, Flavobacteriales</em> can produce extracellular polymeric substances and aggravating membrane fouling. Fouling layers possess highly similar microbial composition with the mixed liquor, with some filamentous microbial orders, e.g. <em>Corynebacteriales</em> and <em>Oligoflexales</em> showing increased relative abundance by 6.83 and 5.64 folds, respectively.</p></div>","PeriodicalId":100805,"journal":{"name":"Journal of Membrane Science Letters","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772421222000113/pdfft?md5=b8a964da11461eef8665ce601239f1e5&pid=1-s2.0-S2772421222000113-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87428180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maryam Irani, Nicholas León, Zhongyun Liu, William J. Koros
{"title":"Overlooked glassy polymer attributes illustrated by asymmetric polyimide hollow fibers","authors":"Maryam Irani, Nicholas León, Zhongyun Liu, William J. Koros","doi":"10.1016/j.memlet.2021.100011","DOIUrl":"10.1016/j.memlet.2021.100011","url":null,"abstract":"<div><p>Gas separation membranes based on glassy polymers often show complex responses to feed compositions, membrane morphologies, and operating conditions. The well-known dual mode sorption and transport models are discussed here as tools to assess plasticization and competition effects in asymmetric morphologies. A framework is illustrated based on these models using polyimide asymmetric hollow fibers. This framework can also be applied to emerging polymer families such as thermally rearranged (TR) and polymers of intrinsic microporosity (PIM), to identify opportunities connected to their innate glassy natures.</p></div>","PeriodicalId":100805,"journal":{"name":"Journal of Membrane Science Letters","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772421221000118/pdfft?md5=5dc7368d1a44eac957b5158da9bfb6b1&pid=1-s2.0-S2772421221000118-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79375190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development of a new blocking model for membrane fouling based on a composite media model","authors":"Andrew L. Zydney","doi":"10.1016/j.memlet.2022.100018","DOIUrl":"10.1016/j.memlet.2022.100018","url":null,"abstract":"<div><p>The pore constriction (or standard blocking) model is widely used to describe the filtration behavior for a wide range of suspensions/solutions even though the underlying assumption of a uniform reduction in the radius of non-interconnected cylindrical pores is unlikely to be valid in almost any system. This short communication presents an alternative blocking model based on a description of the effective permeability of a fouled membrane accounting for the flow around and under the deposited foulant through the interconnected pore structure of the membrane. The resulting filtration equation gives linear fouling relationships that are very similar to those for the classical pore constriction model, including the slope on a derivative plot, providing a possible justification for the successful use of the pore constriction formalism in describing the flux decline behavior in many membrane systems. In addition, this new blocking model is readily extended to the case where the deposited foulant is permeable to flow. This new composite media blocking model not only provides useful expressions for the rate of flux decline during constant pressure filtration, it also provides insights into the underlying physical mechanisms controlling fouling in membrane systems.</p></div>","PeriodicalId":100805,"journal":{"name":"Journal of Membrane Science Letters","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S277242122200006X/pdfft?md5=188498cf425e22cb1a32cb11b7bedc18&pid=1-s2.0-S277242122200006X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74446120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Beyond separation: Membranes towards medicine","authors":"Ying Xie, Zhenyu Chu, Wanqin Jin","doi":"10.1016/j.memlet.2022.100020","DOIUrl":"10.1016/j.memlet.2022.100020","url":null,"abstract":"<div><p>Due to the global epidemic outbreak in recent years, membrane research and membrane-derived products have been of increasingly wide interest for medical applications. Currently, a new but important development direction of membranes in medicine goes beyond the separation function of the membrane itself to realize multifunctional integration. With the introduction of additional functions such as scaffold, responsiveness, and sensing, membranes have exhibited excellent performance in the areas of tissue engineering, drug delivery and disease diagnosis. From this perspective, we will review the recent progress made by membranes in the medical field and emphasize the principles of function integration and separation. Possible challenges will be proposed, and future development directions for medicine-related membranes will be discussed.</p></div>","PeriodicalId":100805,"journal":{"name":"Journal of Membrane Science Letters","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772421222000083/pdfft?md5=6e13fc5deda86e46e011ca65148d9a87&pid=1-s2.0-S2772421222000083-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88810608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pengtao Gao , Pengrui Jin , Ruben Dumas , Jianjun Huang , Anika Benozir Asha , Ravin Narain , Bart Van der Bruggen , Xing Yang
{"title":"A prebiotic chemistry inspired one-step functionalization of zwitterionic nanofiltration membranes for efficient molecular separation","authors":"Pengtao Gao , Pengrui Jin , Ruben Dumas , Jianjun Huang , Anika Benozir Asha , Ravin Narain , Bart Van der Bruggen , Xing Yang","doi":"10.1016/j.memlet.2022.100013","DOIUrl":"10.1016/j.memlet.2022.100013","url":null,"abstract":"<div><p>Loose nanofiltration (LNF) membranes have shown promises in achieving efficient separation on molecular level at relatively low pressure. In this study, a zwitterionic PES/AMN/PSBAE LNF membrane was designed by co-depositing the AMN and an in-house made zwitterionic copolymer of poly(sulfobetaine methacrylate-co-2-aminoethyl methacrylate hydrochloride) (PSBAE), in which a bio-inspired molecule aminomalononitrile (AMN) with prebiotic chemistry was used to replace the commonly applied polydopamine for rapid membrane coating, significantly reducing the surface modification time from more than 20 h to less than 1 h. The AMN-based LNF, namely PES/AMN/PSBAE membrane, was demonstrated in the separation of dye/salt from synthetic textile wastewater, exhibiting superior performance with a high water permeance of 62.9 LMH bar<sup>−1</sup> and nearly complete dye/salt fractionation, i.e., simultaneously a high rejection of all dyes tested up to 99.9% and almost complete transport of salts. Combining with material and membrane characterization, the separation performance of the membrane was evaluated, demonstrating the advantages of the prebiotic chemistry coating and zwitterionic functionality. This study provides a new and facile strategy based on the AMN chemistry for LNF membrane surface functionalization to achieve efficient molecular separation.</p></div>","PeriodicalId":100805,"journal":{"name":"Journal of Membrane Science Letters","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772421222000010/pdfft?md5=fd837322312ade16d7bd76e027f3fde0&pid=1-s2.0-S2772421222000010-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91019662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yu-Xi Huang , Zhangxin Wang , Thomas Horseman , Joshua L. Livingston , Shihong Lin
{"title":"Interpreting contact angles of surfactant solutions on microporous hydrophobic membranes","authors":"Yu-Xi Huang , Zhangxin Wang , Thomas Horseman , Joshua L. Livingston , Shihong Lin","doi":"10.1016/j.memlet.2022.100015","DOIUrl":"10.1016/j.memlet.2022.100015","url":null,"abstract":"<div><p>Almost every single experimental study regarding membranes involves the measurement of contact angle (CA) to quantify the membrane wetting property. However, the interpretation of CA can sometimes be tricky. In this study, we investigate an interesting phenomenon about the CA of a surfactant solution on a microporous hydrophobic membrane. Specifically, a surfactant solution with a very low surface tension can have an unexpectedly high CA on a microporous hydrophobic membrane. In contrast, a water/ethanol mixture with the same surface tension completely wicks the membrane (i.e., zero CA). The drastic difference in CA between the two types of liquid of the same surface tension results from the rapid adsorption of surfactants at the wetting frontier which substantially reduces the local surfactant concentration and increases the local surface tension. The same theory can also be applied to explain the striking difference between the two liquids in capillary rise and liquid entry pressure. The results from this study cast significant doubt on the role of surface tension in understanding the wetting behavior of surfactant solutions when they are in contact with solid with large specific area and raise important questions regarding the utility of measuring CA for surfactant solutions on microporous hydrophobic membranes.</p></div>","PeriodicalId":100805,"journal":{"name":"Journal of Membrane Science Letters","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772421222000034/pdfft?md5=82ce1a58bec6e4d0c51c5d77699434a1&pid=1-s2.0-S2772421222000034-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81415604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dechao Wang , Yunpan Ying , Yaping Zheng , Yunchuan Pu , Ziqi Yang , Dan Zhao
{"title":"Induced polymer crystallinity in mixed matrix membranes by metal-organic framework nanosheets for gas separation","authors":"Dechao Wang , Yunpan Ying , Yaping Zheng , Yunchuan Pu , Ziqi Yang , Dan Zhao","doi":"10.1016/j.memlet.2022.100017","DOIUrl":"10.1016/j.memlet.2022.100017","url":null,"abstract":"<div><p>The induced crystallinity behavior of the polymer of intrinsic microporosity (PIM-1) matrix in mixed matrix membranes (MMMs) by a novel class of two-dimensional (2D) metal-organic framework nanosheets, <em>i.e.</em>, NUS-8-COOH, is demonstrated. The proposed ideal of enhanced crystallinity induced by NUS-8-COOH nanosheets can be extended to other classes of 2D nanosheet-containing MMMs, thus opening up plentiful opportunities for constructing MMMs with superior interfacial compatibility toward enhanced gas separation performance.</p></div>","PeriodicalId":100805,"journal":{"name":"Journal of Membrane Science Letters","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772421222000058/pdfft?md5=a031c6a9c8fdeee3c559ef1d12c24f92&pid=1-s2.0-S2772421222000058-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77624022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}