{"title":"Synthesis of thin DD3R zeolite membranes on hollow fibers using gradient-centrifuged seeds for CO2/CH4 separation","authors":"Yue Zhou , Peng Du , Zhifei Song, Xinfa Zhang, Yu Liu, Yuting Zhang, Xuehong Gu","doi":"10.1016/j.memlet.2023.100038","DOIUrl":null,"url":null,"abstract":"<div><p>All-silica DD3R zeolite has been recognized as a promising CO<sub>2</sub>-selective membrane material owing to its appropriate pore size (0.36 nm × 0.44 nm), strong hydrophobicity, excellent thermal and chemical stabilities. In order to reduce membrane cost, it is meaningful to synthesize thin DD3R zeolite membranes that possess high gas permeance. In this work, high-performance DD3R zeolite membranes were synthesized on TiO<sub>2</sub>/α-Al<sub>2</sub>O<sub>3</sub> composite hollow fibers by secondary growth method. Sigma-1 zeolite seeds were ball-milled and then fractionated into different-sized seeds by gradient centrifugation. Smaller seed particles were collected after centrifuged at higher rotation speed rate. A very thin and dense DD3R zeolite membrane (thickness: 1.2 µm) was synthesized by using the smallest seeds (ZS4) with average particle size of 163 nm, which were obtained from the supernatant of the third centrifugation at 11,000 rpm. The as-synthesized membranes were employed in separation of equimolar CO<sub>2</sub>/CH<sub>4</sub> mixture. Compared with the original ball-milled seeds (ZS1)-induced membrane, the seed ZS4-induced membrane exhibited an improved CO<sub>2</sub> permeance of 1.2 × 10<sup>−7</sup> mol m<sup>−2</sup> Pa<sup>−1</sup> s<sup>−1</sup> by 62%. All the resultant membranes performed good CO<sub>2</sub>/CH<sub>4</sub> separation selectivities between 262 and 364.</p></div>","PeriodicalId":100805,"journal":{"name":"Journal of Membrane Science Letters","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science Letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772421223000028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 1
Abstract
All-silica DD3R zeolite has been recognized as a promising CO2-selective membrane material owing to its appropriate pore size (0.36 nm × 0.44 nm), strong hydrophobicity, excellent thermal and chemical stabilities. In order to reduce membrane cost, it is meaningful to synthesize thin DD3R zeolite membranes that possess high gas permeance. In this work, high-performance DD3R zeolite membranes were synthesized on TiO2/α-Al2O3 composite hollow fibers by secondary growth method. Sigma-1 zeolite seeds were ball-milled and then fractionated into different-sized seeds by gradient centrifugation. Smaller seed particles were collected after centrifuged at higher rotation speed rate. A very thin and dense DD3R zeolite membrane (thickness: 1.2 µm) was synthesized by using the smallest seeds (ZS4) with average particle size of 163 nm, which were obtained from the supernatant of the third centrifugation at 11,000 rpm. The as-synthesized membranes were employed in separation of equimolar CO2/CH4 mixture. Compared with the original ball-milled seeds (ZS1)-induced membrane, the seed ZS4-induced membrane exhibited an improved CO2 permeance of 1.2 × 10−7 mol m−2 Pa−1 s−1 by 62%. All the resultant membranes performed good CO2/CH4 separation selectivities between 262 and 364.