{"title":"Effect of minor addition of silicon on deformation behaviour and texture evolution in CrFeNi medium entropy alloy","authors":"Swati Mahato , Tirupati Dhidhi , Nilesh P. Gurao , Krishanu Biswas","doi":"10.1016/j.jalmes.2024.100133","DOIUrl":"10.1016/j.jalmes.2024.100133","url":null,"abstract":"<div><div>The present investigation systematically explores the effect of a minor addition of silicon on the microstructure, texture, and mechanical properties of FCC CrFeNi medium entropy alloy during rolling at room temperature. The addition of 2 at% Si in CrFeNi alloy results in the reduction of stacking fault energy from 22.4 mJ/m<sup>2</sup> for CrFeNi to 18.6 mJ/m<sup>2</sup> for (CrFeNi)<sub>98</sub>Si<sub>2</sub> alloy. Bulk texture analysis reveals the presence of Brass and Goss texture components in the 90 % rolled samples. Microtextural study reveals that in CrFeNi and (CrFeNi)<sub>98</sub>Si<sub>2</sub> alloy, Goss-orientated grains exhibit greater stability throughout the deformation compared to Cu-oriented grains. In addition to twinning, profuse shear banding was observed in both alloys at 90 % rolling reduction. The mechanical properties of homogenised (CrFeNi)<sub>98</sub>Si<sub>2</sub> alloy demonstrate the enhanced combination of yield strength and hardness due to improved solid solution strengthening and dislocation strengthening accompanied by a marginal decrease in ductility due to twinning-induced strain hardening. While in 90 % rolled CrFeNi and (CrFeNi)<sub>98</sub>Si<sub>2</sub> alloy, both yield strength and ultimate tensile strength increase drastically due to enhanced solid solution and dislocation strengthening though with a significant decrease in ductility.</div></div>","PeriodicalId":100753,"journal":{"name":"Journal of Alloys and Metallurgical Systems","volume":"8 ","pages":"Article 100133"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142756578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Influence of heat treatment time on microstructure evolution of austempered nodular cast iron evaluated by image segmentation","authors":"P.A. Ramos , I.N.R. Melo , V.H.M Medeiros , P.P. Brito","doi":"10.1016/j.jalmes.2024.100135","DOIUrl":"10.1016/j.jalmes.2024.100135","url":null,"abstract":"<div><div>This study aimed to investigate the microstructural characteristics of a pearlitic austempered nodular cast iron (ADI) prepared with different austempering times. In austempering of ductile irons, the material is austenitiezed and rapidly cooled to temperatures typically between 420 and 290°C in a salt bath to allow the formation of a microstructure composed of graphite nodules dispersed in a residual austenitic matrix, stabilized with a high carbon content, and acicular ferrite, known as “ausferrite”. Presently, microstructure characterization by optical and scanning electron microscopy were carried out after different austempering times. Neural network image segmentation using ImageJ® software was employed to perform quantitative phase analysis, and the results were compared with volume fractions obtained by XRD measurements, one of the traditional methods for determining the residual austenite content in ferrous alloys. It was found that both carbon content in austenite and austenite fraction increase with austempering time and that graphite nodule geometry becomes gradually more irregular. The proposed methodology for quantitative analysis allowed classification of microstructure constituents with high accuracy in comparison to the XRD results.</div></div>","PeriodicalId":100753,"journal":{"name":"Journal of Alloys and Metallurgical Systems","volume":"8 ","pages":"Article 100135"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142744620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Thermo-microstructural-mechanical modeling of the effect of wire diameters on single-bead Ti-6Al-4V wall deposits by laser wire deposition","authors":"Qi Zhang , Nejib Chekir , Mathieu Brochu","doi":"10.1016/j.jalmes.2024.100134","DOIUrl":"10.1016/j.jalmes.2024.100134","url":null,"abstract":"<div><div>Six Ti-6Al-4V deposits with two geometries to extract tensile coupons from the build direction (Z) and travel direction (X), were produced by laser wire deposition (LWD) with different wire diameters. Inconsistent wall profiles were found for deposits produced with wire diameters of 1.1 and 1.6 mm due to the inhomogeneous melt pool sizes generated during the deposition process, indicating the unstable thermal history. It was found that increasing the wire diameter resulted in increased heat input, which produced coarser grains and resulted in decreased strength. Fractography analysis showed that greater amounts of defects were observed on the fracture surfaces of deposits produced with increased wire diameters, which weakened the tensile properties. The grain boundary <span><math><mi>α</mi></math></span> and the surrounding colony <span><math><mi>α</mi></math></span> facilitated crack propagation and caused early failure. This research also proposed a platform using modeling techniques to control cooling rates, microstructure (<span><math><mrow><mi>α</mi><mo>/</mo><mi>β</mi></mrow></math></span> phase fractions and <span><math><mi>α</mi></math></span> lath widths) and yield strength of LWD Ti-6Al-4V. The accuracy of all models was validated by comparing them with experimental data.</div></div>","PeriodicalId":100753,"journal":{"name":"Journal of Alloys and Metallurgical Systems","volume":"8 ","pages":"Article 100134"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142744619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qanita Tayyaba , Adnan Qayyum Butt , Tayyab Ali khan , Zeeshan Nazar , Abdul Rehman , Wu Yusheng
{"title":"Mechanical alloying of bronze with aluminum and nickel: Impact on corrosion resistance and hardness","authors":"Qanita Tayyaba , Adnan Qayyum Butt , Tayyab Ali khan , Zeeshan Nazar , Abdul Rehman , Wu Yusheng","doi":"10.1016/j.jalmes.2024.100136","DOIUrl":"10.1016/j.jalmes.2024.100136","url":null,"abstract":"<div><div>The effect of alloying bronze with aluminum (Al) and nickel (Ni) on hardness and corrosion resistance is examined in this work. Bronze alloys were manufactured in vacuum induction melting (VIM) using 99.9 % pure copper as the main component. High-purity tin, aluminum, and nickel were added. This study examined the corrosion behavior of an Al and Ni-modified bronze alloy in a 3.5 % NaCl solution using potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS). The corrosion resistance of the alloys was assessed, with findings indicating that Ni-bronze had the best corrosion resistance—nearly twice as much as bronze. Microstructural examinations and Rockwell hardness testing further revealed that nickel-bronze had the highest hardness values, owing to strong nickel intermetallic phases formed. This thorough analysis highlights how Ni-bronze alloys perform better in challenging conditions, which qualifies them for uses needing strong mechanical durability and resistance to corrosion.</div></div>","PeriodicalId":100753,"journal":{"name":"Journal of Alloys and Metallurgical Systems","volume":"8 ","pages":"Article 100136"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142744621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of hot-pressing sintering temperature and pressure on the densification and properties of Ti-TiB composites","authors":"Padiri Murali, Kausik Chattopadhyay, Vikas Jindal","doi":"10.1016/j.jalmes.2024.100132","DOIUrl":"10.1016/j.jalmes.2024.100132","url":null,"abstract":"<div><div>Ti/TiB composites exhibit promising potential for applications in the automotive, aerospace, and biomedical sectors. Hot pressing coupled with in situ reaction synthesis is a commonly employed technique for fabricating discontinuously TiB-reinforced titanium matrix composites. Despite its efficacy, comprehensive research investigating the influence of hot-pressing process parameters on the densification and properties of these composites remains scarce. This study systematically examined the effects of pressure (16–48 MPa) and temperature (1250 °C to 1350 °C) on the density, microstructure, and mechanical properties of Ti/TiB composites produced through hot pressing. By analyzing densification curves and rate curves, the densification behavior under varying processing conditions was elucidated. The results indicate that elevated sintering temperatures and pressures correlate with increased densification rates, reduced porosity, and enhanced sample density. A strong relationship between relative densities and hardness was observed. This research contributes to a deeper understanding of the hot-pressing sintering process for Ti-TiB composites and facilitates the optimization of processing conditions.</div></div>","PeriodicalId":100753,"journal":{"name":"Journal of Alloys and Metallurgical Systems","volume":"8 ","pages":"Article 100132"},"PeriodicalIF":0.0,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142706634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Microstructural evolution and mechanical properties of Cr–Ni–Mo–V steel with banded structure during tempering","authors":"Yunfei Du , Zhengzhao Gu , Yaqin Zhang , Rui Bai","doi":"10.1016/j.jalmes.2024.100131","DOIUrl":"10.1016/j.jalmes.2024.100131","url":null,"abstract":"<div><div>Effects of tempering temperature on the microstructure evolution and mechanical properties of Cr–Ni–Mo–V steel with banded structure were investigated in this study. It is indicated that the tempering temperature has a significant influence on the morphology of the martensite lath in the banded structure. Carbides M<sub>3</sub>C, M<sub>2</sub>C and M<sub>2</sub>C/M<sub>7</sub>C<sub>3</sub> are identified at tempering temperature of 430 °C, 580 °C and 630 °C, respectively. The MC precipitate is a stable phase existing in a wide range of tempering temperature. As the tempering temperature increases, the tensile strength is gradually decreased, while the elongation and impact toughness are improved. The delaminated crack observed in the fracture surface is connected to the banded structure in Cr–Ni–Mo–V steel. It is suggested that the enhancement of ductility and toughness can be attributed to the transformation of the stress state and the blunting of the crack tip. The relationship between the microstructure and mechanical properties is explored, and a detailed insight into the precipitation processes of carbides at different tempering temperature are conducted.</div></div>","PeriodicalId":100753,"journal":{"name":"Journal of Alloys and Metallurgical Systems","volume":"8 ","pages":"Article 100131"},"PeriodicalIF":0.0,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142706633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Data-driven design of high bulk modulus high entropy alloys using machine learning","authors":"Sandeep Jain , Reliance Jain , Vinod Kumar , Sumanta Samal","doi":"10.1016/j.jalmes.2024.100128","DOIUrl":"10.1016/j.jalmes.2024.100128","url":null,"abstract":"<div><div>In the current research, machine learning (ML) models were used as a tool for predicting the bulk modulus of High Entropy Alloys (HEAs). ML was employed to optimize HEA compositions for superior bulk modulus values. The study assessed five regression models: Random Forest (RF), K-Nearest Neighbors (KNN), XGBoost (XGB), Support Vector Regression (SVR), and Lasso regression. The XGB regression model delivered the best results, with an R-squared (R<sup>2</sup>) value of 95.2 % and an RMSE of 2.6 % on the validation dataset. The XGB model's performance was further validated by experimental work, showing an R<sup>2</sup> value of 94.8 % and an RMSE of 3.6 %. The R-squared, RMSE, and MAE values during training, testing, and validation for the XGB model ranged from 93.2 % to 99.62 %, 0.97 to 3.64, and 0.12 to 1, respectively. Furthermore, we used the top three trained models to predict the bulk modulus of six new HEAs that were not part of the training, testing, or validation datasets. These predictions achieved R² values of 94.8 %, 93.4 %, and 92.4 %, RMSE values of 3.6 %, 4.1 %, and 4.4 %, along with MAE values of 3.4 %, 3.8 %, and 4.1 %, for the XGB, Lasso, and SVR models, respectively. This work advances the field by bridging the gap in HEA discovery and property evaluation, offering novel methods for designing HEAs with desirable bulk modulus values, and unlocking new possibilities for HEA applications.</div></div>","PeriodicalId":100753,"journal":{"name":"Journal of Alloys and Metallurgical Systems","volume":"8 ","pages":"Article 100128"},"PeriodicalIF":0.0,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142706631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"High-temperature deformation behavior and concurrent microstructural evolution in novel Ni-based compositionally complex alloy","authors":"Ananya Chattree , Amrit Pandey , Saurabh S. Nene , Jaiveer Singh","doi":"10.1016/j.jalmes.2024.100127","DOIUrl":"10.1016/j.jalmes.2024.100127","url":null,"abstract":"<div><div>In this study, a novel Ni<sub>46.8</sub>Fe<sub>23</sub>Co<sub>10</sub>V<sub>7</sub>(Al, Si)<sub>6.6</sub> compositionally complex alloy (Ni-CCA) has been designed by merging the CALPHAD approach with the theoretical concepts (enthalpy of mixing, atomic radius mismatch parameter, valence electron concentration (VEC), and pair sigma forming elements (PSFE)). The theoretical analysis and the CALPHAD modeling predict the formation of a single FCC phase at room temperature along with the absence of TCP phases in the designed Ni-CCA. Subsequently, the pseudo-binary phase diagram obtained from Thermo-Calc through the latest HEA database predicts the presence of newer strengthening ordered phases containing Ni-Al-Si at elevated temperatures in Ni-CCA. Microstructural characterization of as-cast Ni-CCA displayed the formation of γ-FCC phase dominated microstructure containing a minor fraction of BCC phase at room temperature whereas high-temperature compression depicted synergistic precipitation of Ni-Al-Si containing L1<sub>2</sub> type precipitate and dynamic recovery/recrystallization events during deformation leading to a marginal drop in yield strength (YS) at 800 °C. Moreover, the formation of necklace microstructure in a deformed specimen confirms the occurrence of dynamic recrystallization (DRX) in novel Ni-CCA.</div></div>","PeriodicalId":100753,"journal":{"name":"Journal of Alloys and Metallurgical Systems","volume":"8 ","pages":"Article 100127"},"PeriodicalIF":0.0,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142658769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P.P. Bhattacharjee , N. Sai Teja , S. Paul , P.K. Ojha , R. Saha
{"title":"Annealing textures of low stacking fault energy (SFE) FCC materials: Traversing binary to high entropy alloys (HEAs)","authors":"P.P. Bhattacharjee , N. Sai Teja , S. Paul , P.K. Ojha , R. Saha","doi":"10.1016/j.jalmes.2024.100130","DOIUrl":"10.1016/j.jalmes.2024.100130","url":null,"abstract":"<div><div>Although the origin of brass-type deformation texture in low SFE alloys has been extensively investigated, the annealing textures of such materials have received less attention, mostly limited to brass and different austenitic steels. On the other hand, the annealing textures of low SFE HEAs have been investigated more intensively recently; however, a comprehensive insight into annealing texture formation from HEAs down to binary systems is missing. To bridge the gap, the annealing texture of FCC single-phase Cu-11.6 at%Al alloy with SFE ∼10 <span><math><mrow><mi>mJ</mi><msup><mrow><mi>m</mi></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></mrow></math></span> comparable to HEAs was first investigated as a model binary system and compared with selected low SFE binary, medium entropy (MEAs), and HEAs to understand the similarities and characteristic differences. The cold-rolled alloy showed massive nanostructure and a typical brass-type texture featured by a strong B ({110}<112>) component expected for a low SFE alloy. Annealing resulted in ultrafine recrystallized microstructure but extensive grain growth at higher temperatures, like other binary alloys but unlike HEAs. The annealing texture showed the retention of deformation components, weak α-fiber (ND//<110>) components and a high random fraction. These features were very similar to HEAs/MEAs and attributed to the absence of oriented nucleation (ON) or oriented growth (OG) mechanisms. However, striking differences such as strong BR ({236}<385>) and D ({113}<332>) components in the brass alloy, selective growth of the G ({110}<001>) and G/B ({110}<115>) in binary Ni-60wt%Co alloy, and strong retention of the {110}<112> component in the annealing texture of (FCC+B2) dual-phase AlCrFe<sub>2</sub>Ni<sub>2</sub> HEA were remarkable. These outcomes indicated underlying microstructural effects on annealing texture formation in low SFE binary to HEAs/MEAs and should motivate further research.</div></div>","PeriodicalId":100753,"journal":{"name":"Journal of Alloys and Metallurgical Systems","volume":"8 ","pages":"Article 100130"},"PeriodicalIF":0.0,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142706630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yanlian Liu , Liyang Huang , Limin Hou , TaoTao Li
{"title":"Determination the crystallographic information of hexagonal magnesium via X-ray diffraction profiles","authors":"Yanlian Liu , Liyang Huang , Limin Hou , TaoTao Li","doi":"10.1016/j.jalmes.2024.100126","DOIUrl":"10.1016/j.jalmes.2024.100126","url":null,"abstract":"<div><div>Researching the crystallographic information is imperative in hexagonal magnesium. In this paper, the comparative evaluation on the crystallite size and shape, strain and texture are carried with semi-quantitively techniques, such as Williamson-hall function, Halder-Wagner function, March-Dollase function, ellipsoid model and the Rietveld method. Both the Williamson-hall function and Williamson Hall function are suitable to determine the crystallite size and strain, while ellipsoid model is suitable to reveal the crystallite shape. With conformed by the classical texture analysis, the Rietveld method and quantitively texture is suitable to determining the texture with fiber typed texture.</div></div>","PeriodicalId":100753,"journal":{"name":"Journal of Alloys and Metallurgical Systems","volume":"8 ","pages":"Article 100126"},"PeriodicalIF":0.0,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142706632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}