{"title":"Molten air—A new class of high capacity batteries","authors":"Stuart Licht","doi":"10.1016/j.inv.2024.100032","DOIUrl":"10.1016/j.inv.2024.100032","url":null,"abstract":"<div><div>The present invention relates to rechargeable electrochemical battery cells (molten air batteries). The cells use air and a molten electrolyte, are quasi-reversible (rechargeable) and have the capacity for multiple electrons stored per molecule, have high intrinsic electric energy storage capacities. The present disclosure also relates to the use of such in a range of electronic, transportation and power generation devices, including as greenhouse gas reduction applications, electric car batteries and increased capacity energy storage systems for the electric grid. US patent 10637115 is for the invention of air and carbon or CO<sub>2</sub> Molten Air batteries, while US patent 11094980 is for the invention of air and metal, boron and a variety of salt/Molten Air batteries.</div></div>","PeriodicalId":100728,"journal":{"name":"Invention Disclosure","volume":"4 ","pages":"Article 100032"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142532737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A novel process for recovery and exploitation of polyesters and polyamides from waste polymeric artifacts","authors":"Massimo Barbieri , Edoardo Terreni , Flavio Tollini , Giuseppe Storti , Davide Moscatelli","doi":"10.1016/j.inv.2024.100026","DOIUrl":"https://doi.org/10.1016/j.inv.2024.100026","url":null,"abstract":"<div><p>Plastic waste is one of the world's biggest sources of pollution. Despite the growing trend towards recycling, there are currently no effective technologies to offset the continuous increase in plastic production. Polyesters and polyamides are among the most widely produced single-use plastics, mainly used in the manufacture of textiles and soft drink bottles. Currently, only a small proportion of these polymers can be effectively recycled. The two primary methods employed for this purpose are mechanical and chemical recycling. Presently, mechanical recycling remains the more widely adopted process within the industrial sector. However, the treatment process is limited to a narrow range of waste materials as it is impossible to remove dyes and the mechanical properties deteriorate due to incompatibility between different plastic materials. Another critical limit of this recycling technology is the limited number of recycling loops that can be done due to the thermal degradation that occurs during the extrusion process. The alternative option is chemical recycling, which allows the depolymerization of the original product to recover the monomers directly. The main drawbacks are the long reaction times and the many solvents needed to achieve high-purity products. As a results, chemical recycling is only economically feasible for large companies that can produce the virgin polymer <em>in situ</em>. In this work, a new technology has been patented. This process consists of three main steps. The first one is the distillation-assisted cyclodepolymerization (DA-CDP), introduced as a modification of the CDP process. In this unit, cyclic oligomers together with high molecular weight compounds are produced. Then, after polymer purification, it is possible to achieve the same molecular weight as the initial polymer in less than 30 min, exploiting the ring-opening polymerization (ROP) of the next step.</p></div>","PeriodicalId":100728,"journal":{"name":"Invention Disclosure","volume":"4 ","pages":"Article 100026"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772444124000077/pdfft?md5=6f1761dd4e4424d4ed83c84cf75d7880&pid=1-s2.0-S2772444124000077-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141541120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shikhasmita Das , Jasha Momo H. Anal , Pranjal Kalita , Lakshi Saikia , Samuel Lalthazuala Rokhum
{"title":"Upcycling waste snail shells into high-performance nanocatalyst for optimized biodiesel production: A sustainable approach","authors":"Shikhasmita Das , Jasha Momo H. Anal , Pranjal Kalita , Lakshi Saikia , Samuel Lalthazuala Rokhum","doi":"10.1016/j.inv.2024.100024","DOIUrl":"https://doi.org/10.1016/j.inv.2024.100024","url":null,"abstract":"<div><p>The transesterification of soybean oil (SO) to biodiesel utilizing a basic CaO nanocatalyst derived from waste snail shells has been reported in this work. The steady rise in greenhouse gas emissions contributes to environmental pollution, posing a significant threat to human life due to the escalating rates of petroleum consumption worldwide. Thus, biodiesel appears as a potential liquid fuel for replacing petroleum diesel. Here we have utilized waste snail shells as a cost-effective material which will reduce the overall biodiesel manufacturing cost. We obtained a remarkable biodiesel yield of 96.1 % with a very low activation energy (30.45 kJ mol<sup>−1</sup>). The catalyst displayed exceptional stability, maintaining consistent catalytic activity over six consecutive cycles without experiencing a notable decline. Using life cycle cost analysis (LCCA) it has been discovered that the estimated cost of producing 1 kg of biodiesel is merely $ 0.935, highlighting its robust potential for extensive commercial adoption.</p></div>","PeriodicalId":100728,"journal":{"name":"Invention Disclosure","volume":"4 ","pages":"Article 100024"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772444124000053/pdfft?md5=bdb6b56b0cd300c25431260603f86e67&pid=1-s2.0-S2772444124000053-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141242721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Youdong Li , Lingying Li , Guoyan Liu , Li Liang , Xiaofang Liu , Jixian Zhang , Chaoting Wen , Jiaoyan Ren , Xin Xu
{"title":"Preparation method of a whole nutrient special medical food with thickening function for dysphagia","authors":"Youdong Li , Lingying Li , Guoyan Liu , Li Liang , Xiaofang Liu , Jixian Zhang , Chaoting Wen , Jiaoyan Ren , Xin Xu","doi":"10.1016/j.inv.2024.100022","DOIUrl":"https://doi.org/10.1016/j.inv.2024.100022","url":null,"abstract":"<div><p>Dysphagia, a serious health issue, is common in healthcare residents and the elderly. The invention provides a method and a formulation for preparing and using a special medical food product for people with dysphagia. The main raw materials used include starch, corn oil, and soy protein. The preparation method of the product is simple, and the concentration can be adjusted to meet the needs of different patients with dysphagia, so that the patients with dysphagia can consume the product safely, and the risk of accidental aspiration can be effectively reduced. The whole nutrition special medical use formula food of the present invention can provide sufficient nutrients, and can meet the basic nutritional requirements needed by the population of patients with dysphagia.</p></div>","PeriodicalId":100728,"journal":{"name":"Invention Disclosure","volume":"4 ","pages":"Article 100022"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S277244412400003X/pdfft?md5=704a91cc01127c2a8462e0bfb5730773&pid=1-s2.0-S277244412400003X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140160011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ignazio Condello, Giuseppe Speziale, Giuseppe Nasso
{"title":"Electric polarization catheter for systemic cardiac output","authors":"Ignazio Condello, Giuseppe Speziale, Giuseppe Nasso","doi":"10.1016/j.inv.2024.100029","DOIUrl":"10.1016/j.inv.2024.100029","url":null,"abstract":"<div><p>The electrical activity plays a vital role in the physiological functions of live organisms, electrical stimulation has been identified as a promising nonpharmacological technique that can modulate the behavior of cellular network, restore and monitoring critical functions and accelerate tissue healing <em>in vitro</em> and <em>in vivo.</em> The red blood cell (RBC) membrane contains proteins and glycoproteins embedded in a fluid lipid bilayer that confers viscoelastic behavior. Sialylated glycoproteins of the RBC membrane are responsible for a negatively charged surface which creates a repulsive electric zeta potential (ζ)between cells. These charges help prevent the interaction between RBCs and the other cells and especially between each other. The zeta potential is a physical property which is exhibited by all particles in suspension. In this context we present for the first time the invention concerns the field of measurement of physiological parameters for determining cardiac output (CO), plus specifically refers to a new apparatus for determination of cardiac output based on determination of the electrical charges induced on the membrane of the RBC (electrical polarization of red blood cells).</p></div>","PeriodicalId":100728,"journal":{"name":"Invention Disclosure","volume":"4 ","pages":"Article 100029"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772444124000107/pdfft?md5=6caecfbf28f95c8e5749669e8b19a034&pid=1-s2.0-S2772444124000107-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141843715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Leonardo Fanton , Pierre Schembri Wismayer , Donald Dalli , Pierluigi Mollicone , Bertram Mallia , Maria Kristina Bartolo , Joseph Buhagiar
{"title":"Hip joint replacement based on linear cylindrical articulations for reduced wear: A radical change in design","authors":"Leonardo Fanton , Pierre Schembri Wismayer , Donald Dalli , Pierluigi Mollicone , Bertram Mallia , Maria Kristina Bartolo , Joseph Buhagiar","doi":"10.1016/j.inv.2024.100030","DOIUrl":"10.1016/j.inv.2024.100030","url":null,"abstract":"<div><div>Hip replacement surgery is a common procedure for patients suffering from hip joint degeneration. However, wear of the implant components, particularly Ultra-High-Molecular-Weight Polyethylene (UHMWPE), remains a significant concern, often leading to complications such as osteolysis and implant loosening. This invention disclosure introduces a novel tri-axial hip replacement design aimed at addressing these issues. The design incorporates three orthogonal cylindrical articulations, each providing one rotational degree of freedom to replicate the natural movements of the hip joint. The prosthesis comprises two components made from UHMWPE (cup and rotator) and two components made from high-N stainless steel (flexor and abductor). Each articulation consists of metal-on-polyethylene bearing couples. Unlike traditional ball-and-socket implants, the novel design limits motion within each articulation to a single direction, taking advantage of friction-induced UHMWPE strain hardening. Moreover, cylindrical joints offer a larger contact surface area than their spherical counterparts, thereby reducing contact stresses. Mid-sized high-fidelity prototypes underwent wear resistance testing, demonstrating significantly superior performance compared to a commercial ball-and-socket implant of similar size tested in the same conditions. Moreover, a cadaveric implantation performed by experienced orthopaedic surgeons showed the implant has good stability even for postures requiring a wide range of motion. This innovative design represents a promising advancement in hip replacement technology, offering improved wear resistance and longevity, thus potentially reducing the need for revision surgeries and enhancing patient outcomes.</div></div>","PeriodicalId":100728,"journal":{"name":"Invention Disclosure","volume":"4 ","pages":"Article 100030"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142422220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The grey-based Taguchi method was used to enhance the TIG-MIG hybrid welding process parameters for mild steel","authors":"Fasil Kebede Tesfaye, Ayitenew Mogninet Getaneh","doi":"10.1016/j.inv.2023.100016","DOIUrl":"10.1016/j.inv.2023.100016","url":null,"abstract":"<div><p>Metal Industry and Machine Technology Development Enterprise is Ethiopia's leading manufacturing industry, producing a diverse range of industrial machinery and products. The main welding process used to join the products is MIG welding, which has several flaws, including low weld-metal toughness, spatter formation, undercut formation, and finally poor tensile strength and toughness. The company also uses TIG welding, which uses an inert gas to produce less smoke and fumes. While this technology produces precise welds, it is a time-consuming operation with a lower production rate. As a result, a special type of welding process is required that incorporates the properties of both types of welding processes. As a result, the hybrid TIG-MIG welding configuration was proposed. The optimization of process parameters of EN24 mild steel material for TIGMIG hybrid welding is presented in this paper. The test was carried out on a 6 mm EN24 mild steel plate. The butt joint configuration was used. MIG welding current, TIG welding current, MIG welding voltage, TIG welding voltage, and welding gun travel speed were used as process parameters. A single-level L27 orthogonal array is used to optimize process parameters. Tensile and hardness tests are used to evaluate the mechanical properties of the weld joint. The optimum level setting of the test, according to the mean effect plot of GRG, is MIG welding current of 200 A, MIG welding voltage of 15 V, TIG welding current of 200 A, TIG welding voltage of 18 V, and welding gun travel speed of 5 mm/s. The significant process parameters were investigated using ANOVA. MIG welding current and MIG welding voltage were significant factors in the ANOVA, with percentage contributions of 44.19 % and 49.20 %, respectively. Five confirmation tests were performed, and the results show that the mean grey relational grade of the conformation test was 0.7594, which falls within the 90 % confidence interval, indicating that the experiment is reliable. Finally, MIG welding, TIG welding, and TIG-MIG hybrid welding processes were compared, with the results indicating that TIG-MIG hybrid welding has the highest hardness and tensile strength of all. Based on the findings, it is possible to conclude that the company should use the hybrid welding method to improve the weld joint's hardness and tensile strength.</p></div>","PeriodicalId":100728,"journal":{"name":"Invention Disclosure","volume":"4 ","pages":"Article 100016"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772444123000071/pdfft?md5=3aeb31e9879780b0c9330ac4a844665c&pid=1-s2.0-S2772444123000071-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136094976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A steel joint for driven precast concrete geothermal energy pile foundations","authors":"Habibollah Sadeghi, Rao Martand Singh","doi":"10.1016/j.inv.2024.100028","DOIUrl":"10.1016/j.inv.2024.100028","url":null,"abstract":"<div><p>This invention describes a steel joint used for connecting two precast concrete driven energy pile (DEP) segments which is known as DEP joint. Precast concrete DEPs are cast in segments with a maximum length of 12 m at a concrete factory. DEPs are typically driven into the ground until bedrock; hence, in places where the bedrock is deeper than 12 m, two or more segments must be connected using a joint to produce longer energy piles. DEPs have not been frequently used because no suitable joint existed that could maintain structural integrity and provide leak-proof coupling between the pipes at the joint interface. The present invention addresses this problem by designing a steel joint that can meet the structural and hydraulic requirements of a suitable steel joint for DEPs. Each quadratic concrete energy pile segment is prefabricated in a concrete factory, where the heat transfer pipes are embedded inside the steel cage of each segment. The steel DEP joint is installed at one or both ends of each concrete segment, and has two or four sidewall channels, depending upon its size. Heat transfer pipes are coupled between every two segments, inside the sidewall channels, while the energy piles are installed at a construction site. The sidewall channels are protected using steel shielding plates that are riveted to the joint so that the pipes and the coupling inside the sidewall channels are protected against harsh frictions during the installation of the DEPs in the ground. The steel joint facilitates the installation of longer precast concrete energy piles up to the bedrock depth, especially in sites where the bedrock is deeper than a single segment length. The main advantages of precast concrete energy piles compared to cast-in-place piles are that they enable better quality control and quality assurance, as well as being easier, faster, and cheaper to install. The invented DEP joint has passed structural integrity tests as required according to the BS EN 12794 standard, and also passed hydraulic pressure tests according to the ASTM F2164 – 21; hence, it is certified to be used in construction projects. We are now looking for potential licensees to start manufacturing the joints and using them in the energy pile industry.</p></div>","PeriodicalId":100728,"journal":{"name":"Invention Disclosure","volume":"4 ","pages":"Article 100028"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772444124000090/pdfft?md5=42485897c1eee43fb65646ba81ee5fb2&pid=1-s2.0-S2772444124000090-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141852853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fluorination of lithium metal used as anode in lithium metal batteries","authors":"Eugenio Gibertini , Piergiorgio Marziani , Massimo Barbieri , Luca Magagnin , Maurizio Sansotera","doi":"10.1016/j.inv.2024.100023","DOIUrl":"https://doi.org/10.1016/j.inv.2024.100023","url":null,"abstract":"<div><p>This invention refers to an innovative treatment capable of forming a coating on metallic lithium. This coating is able to solve the problem of dendritic growth, which represents a safety risk for batteries in terms of overheating or even catching fire. It is a process for the surface fluorination of metallic lithium using elemental fluorine. In this way, a uniform and impurity-free surface layer of lithium fluoride is formed on the whole surface of metallic lithium. This highly reproducible treatment can also be carried out on a large scale; it allows the creation of a material that can be advantageously used as anode in lithium batteries, since it guarantees significantly higher performances than those obtained by using bare metallic lithium anodes, and also those with lithium metal anodes equipped with a lithium fluoride layer, in which the creation of a lithium fluoride layer is achieved in situ by organic or other inorganic fluorinating agents.</p></div>","PeriodicalId":100728,"journal":{"name":"Invention Disclosure","volume":"4 ","pages":"Article 100023"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772444124000041/pdfft?md5=f23498f9aa301c3c7f4a7165365f501d&pid=1-s2.0-S2772444124000041-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140533339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Capacitive carbon dot electronic nose for bacterial detection","authors":"Vinoth Selvaraj , Nitzan Shauloff , Raz Jelinek","doi":"10.1016/j.inv.2024.100031","DOIUrl":"10.1016/j.inv.2024.100031","url":null,"abstract":"<div><div>A capacitive carbon dots (C-dots)-based electronic nose (e-nose) has been developed. The sensing scheme relies on the adsorption of bacterially secreted volatile molecules onto electrodes, each coated with C-dots exhibiting different polarities. The varying affinities of volatile molecules having different polarities to the electrode-deposited C-dots gave rise to distinct capacitance changes. Capacitance transformations recorded from three C-dot-coated electrodes gave rise to “capacitive fingerprints” for different bacteria, providing the means for distinguishing among microbial species. The capacitive C-dot e-nose was constructed from inexpensive and environmentally benign building blocks, is recyclable and easy to use, and constitutes a powerful platform for gas sensing in general, and bacterial detection in particular.</div></div>","PeriodicalId":100728,"journal":{"name":"Invention Disclosure","volume":"4 ","pages":"Article 100031"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142422219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}