{"title":"A transcription factor-based biosensor for identification of the polyethylene terephthalate-degrading enzyme","authors":"Shengwei Sun","doi":"10.1016/j.inv.2025.100038","DOIUrl":"10.1016/j.inv.2025.100038","url":null,"abstract":"<div><div>Screening and mining efficient polyethylene terephthalate (PET)-degrading enzyme is a promising strategy for plastic waste treatment and recycling. This invention provides a novel transcription factor-based biosensor method for identifying potential PET-degrading enzymes from the microorganisms. When PET is degraded by a specific enzyme to produce terephthalic acid (TPA), the transcription factor TphR recognizes the TPA substrate and then activates the transcription of downstream green fluorescent protein (GFP) reporter, generating measurable fluorescence signals in bacterial cells.</div></div>","PeriodicalId":100728,"journal":{"name":"Invention Disclosure","volume":"5 ","pages":"Article 100038"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143182586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fatty acid hydratases for hydroxy fatty acid bioproduction","authors":"Yu Chyuan Heng, Sandra Kittelmann","doi":"10.1016/j.inv.2025.100037","DOIUrl":"10.1016/j.inv.2025.100037","url":null,"abstract":"<div><div>Hydroxy fatty acids are an emerging class of compounds with growing industrial and medicinal significance, yet their chemical synthesis remains challenging. Consequently, biological synthesis has been explored as an alternative approach, with fatty acid hydratases gaining considerable interest due to their mild reaction conditions and broad substrate and product ranges. The present invention introduces 21 fatty acid hydratases with varied regio-selectivity, substrate, and product scopes, and discloses methods of producing hydroxy fatty acids from unsaturated fatty acids using individual or combinations of these enzymes. The present invention offers a foundation for industrial-scale hydroxy fatty acid bioproduction, paving the way to broaden the availability and application of hydroxy fatty acids across various sectors.</div></div>","PeriodicalId":100728,"journal":{"name":"Invention Disclosure","volume":"5 ","pages":"Article 100037"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143373112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"STEP carbon dioxide free production of societal staples","authors":"Stuart Licht","doi":"10.1016/j.inv.2024.100035","DOIUrl":"10.1016/j.inv.2024.100035","url":null,"abstract":"<div><div>Due to significant CO<sub>2</sub> emissions, atmospheric CO<sub>2</sub> levels have surpassed 423 ppm for the first time in recorded history, nearly doubling its level from that over the past few hundred thousand years. The primary contributor to this accumulation is anthropogenic release of CO<sub>2</sub>. Addressing the challenge of reducing atmospheric CO<sub>2</sub> requires developing carbon-neutral industrial processes to replace current CO<sub>2</sub>-intensive methods and innovating low-cost technologies for capturing and converting CO<sub>2</sub>, and exploring its potential as a feedstock for fuels and societal staples. In pursuit of these goals, efforts have focused on sustainable methods for industrial production without a high carbon footprint, for which the Solar Thermal Electrochemical Process (STEP) was developed. In STEP, solar UV–visible energy powers a photovoltaic device for high temperature electrolysis, while solar thermal energy heats another system crucial for the electrolytic processes for carbon capture and to generate societal staples, such as H<sub>2</sub> or syngas, iron, aluminum, lithium, magnesium, oxygen and chlorine at low energy and without CO<sub>2</sub>. This comprehensive use of sunlight enhances the overall efficiency of solar energy conversion compared to other methods. Applications of STEP include CO<sub>2</sub>-free synthesis of iron, bleach and fuels.</div></div>","PeriodicalId":100728,"journal":{"name":"Invention Disclosure","volume":"5 ","pages":"Article 100035"},"PeriodicalIF":0.0,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143182585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"In-situ monitoring of grease consistency","authors":"K.P. Lijesh, M.M. Khonsari","doi":"10.1016/j.inv.2024.100036","DOIUrl":"10.1016/j.inv.2024.100036","url":null,"abstract":"<div><div>The present work proposes a novel in-situ measurement technology to monitor the complex evolution of consistency during grease manufacturing. Variations in raw materials, environmental conditions, and human errors often lead to inconsistencies in the final grease consistency across production batches, causing product wastage, rework, higher costs, and production delays. To guide grease manufacturers in achieving consistent final products, a technology was developed and patented to enable real-time monitoring of rheological properties using accumulated entropy generation (AEG), a parameter derived from the principles of irreversible thermodynamics. A process sensor unit (PSU) was developed to measure AEG by recording real-time current, voltage, and process temperatures in a 5000 kg grease kettle. Tests on NLGI grade 2 and grade 1.5 grease batches demonstrated a strong linear correlation between AEG values and grease consistency, enabling a predictive model for consistency control for future batches.</div></div>","PeriodicalId":100728,"journal":{"name":"Invention Disclosure","volume":"5 ","pages":"Article 100036"},"PeriodicalIF":0.0,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143182584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Decarbonization of iron production","authors":"Stuart Licht","doi":"10.1016/j.inv.2024.100033","DOIUrl":"10.1016/j.inv.2024.100033","url":null,"abstract":"<div><div>Today's carbothermal process for producing iron from iron ore has a high carbon footprint causing massive CO<sub>2</sub> emissions into the atmosphere. Alternatives are needed to mitigate the climate change effects of rising CO<sub>2</sub> concentrations. This invention is a low carbon footprint, zero CO<sub>2</sub> emission, alternative iron production process. Iron oxide ore is discovered to be highly soluble in certain molten carbonates, such as lithium carbonate. Iron is produced electrolytically in these molten salts at approximately 750°C by splitting iron oxide into iron metal and oxygen. This is a high efficiency, low energy, low-carbon footprint alternative to the massive CO<sub>2</sub> emissions associated with the conventional iron industry.</div></div>","PeriodicalId":100728,"journal":{"name":"Invention Disclosure","volume":"4 ","pages":"Article 100033"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142532755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thomas Manning , Teighlor Livingston , Capri Persaud , Akshil Patel , James Nienow
{"title":"Molecular building blocks and nutrients as a novel cancer treatment","authors":"Thomas Manning , Teighlor Livingston , Capri Persaud , Akshil Patel , James Nienow","doi":"10.1016/j.inv.2024.100021","DOIUrl":"10.1016/j.inv.2024.100021","url":null,"abstract":"<div><p>In this invention, a novel cancer drug is formed by Cu(II) and Fe(III) binding the medicinal molecule Paclitaxel (PAC). This complexation increases the water solubility of the taxane, alters the structure so resistance mechanisms do not recognize it, and adds additional toxicity. The copper (II) species can generate reactive oxidation species (ROS) and randomly bind and distort proteins within a cancer cell. Cu(II) also plays a role in accelerating angiogenesis and creates a Trojan horse effect that increases its uptake rate by the cancer cells. The empirical formula for the complex is Cu<sub>x</sub>Fe<sub>y</sub>PAC<sub>1</sub>, where <em>X</em> + <em>Y</em> equals a value between 0 and 10.</p></div>","PeriodicalId":100728,"journal":{"name":"Invention Disclosure","volume":"4 ","pages":"Article 100021"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772444124000028/pdfft?md5=04c0bb46cb8c9ac88125a69ad17e6775&pid=1-s2.0-S2772444124000028-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140268610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Novel solid catalyst sulfonic acid functionalized carbonaceous material for biodiesel production","authors":"Joseph VL Ruatpuia, Samuel Lalthazuala Rokhum","doi":"10.1016/j.inv.2024.100020","DOIUrl":"https://doi.org/10.1016/j.inv.2024.100020","url":null,"abstract":"<div><p>A one-pot hydrothermal carbonization-sulfonation procedure was employed to develop robust, carbon-based solid catalyst sulfonic acid functionalized carbonaceous material (SAFACAM) possessing acidic functions up to 5.31 mmol g<sup>−1</sup> for the first time at 80 °C. With its atom-efficient, one-pot preparation from a plentiful natural biomass derivative (glucose), the current catalyst benefits the environment and has the potential to lower the overall cost of producing biodiesel by converting cheap raw materials. The diminishing supply of fossil fuels coupled with the polluting effects of their use is driving the quest for more sustainable sources of energy. The pursuit of producing biodiesel from affordable, non-edible oil has become progressively significant due to its dual benefits of sustainability and cost-efficiency. In this context, <em>Jatropha curcas</em> oil (JCO) has gained attention in the energy sector, as it holds promise as a viable feedstock for biodiesel manufacturing and a renewable energy solution for numerous nations. Additionally, the catalyst exhibited exceptional physical stability and reactivity throughout 5 consecutive cycles, establishing its potential as a highly promising catalyst for sustainable biodiesel manufacture.</p></div>","PeriodicalId":100728,"journal":{"name":"Invention Disclosure","volume":"4 ","pages":"Article 100020"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772444124000016/pdfft?md5=81c5989e602f24450b829369714be0be&pid=1-s2.0-S2772444124000016-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139675935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The carbon dioxide free production of cement","authors":"Stuart Licht","doi":"10.1016/j.inv.2024.100034","DOIUrl":"10.1016/j.inv.2024.100034","url":null,"abstract":"<div><div>Following power generation, cement stands as the second-largest industrial source of anthropogenic greenhouse gas emissions. However, in this invention a new molten salt chemistry now enables solar thermal energy to drive to calcium oxide production, completely eliminating carbon dioxide emissions during cement production. This achievement is realized through a one-pot electrochemical synthesis method with both environmental benefits and cost efficiency. Two modes of the invention include a direct mode in which limestone is electrochemically converted to lime without CO<sub>2</sub> emission, and the indirect mode in which the CO<sub>2</sub> from the conventional production of lime is electrochemically converted to carbon. This invention is currently undergoing scale-up with support of the Emissions Reduction Alberta Grant IT0162473. We are looking for collaborators, joint-venturers and investors.</div></div>","PeriodicalId":100728,"journal":{"name":"Invention Disclosure","volume":"4 ","pages":"Article 100034"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142703233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Innovative Photovoltaic Cooling System","authors":"Ryan Bugeja, Luciano Mule’ Stagno","doi":"10.1016/j.inv.2024.100027","DOIUrl":"10.1016/j.inv.2024.100027","url":null,"abstract":"<div><p>With the ever-increasing adoption of solar energy and the lack of space for PV installations, targeting maximum photovoltaic operational efficiencies has become essential. One of the key challenges faced by PV installations in warm climates is thermal management, which is caused by increasing temperatures due to PV conversion inefficiencies and limited ventilation possibilities in certain installations. Despite prior art, further improvement is still needed to provide a novel system that can offer more efficient and controllable temperature decrease of photovoltaic modules in both land and offshore installations. The present invention, termed IPCoSy, satisfies the aforementioned needs in the art by providing a novel system for cooling a solar panel assembly, including at least one photovoltaic module having a plurality of solar cells generating electrical power and a PV junction box attached to the back of the photovoltaic module. A part of this invention discloses a new type of PV module that is a modification of standard commercial modules. This new PV module incorporates a water chamber at the back of a solar cell assembly to regulate operational temperatures. Another part of this invention presents an after-market cooling system that can be fitted to existing standard PV modules to add the cooling effect. This part of the invention presents solid and flexible water tanks that can be fitted directly into a gap at the back of standard PV modules. Moreover, this invention presents details on parts that distinguish this cooling system from prior art, such as an internal stream spreader to obtain better fluid dynamics and external fittings that allow the PV module to be installed at any tilt angle without jeopardizing the cooling effect. Finally, this invention discloses different application areas of this cooling system, such as residential and industrial water heating, reverse osmosis plants and offshore photovoltaic installations, showcasing the product's versatility, adaptability and large market suitability.</p></div>","PeriodicalId":100728,"journal":{"name":"Invention Disclosure","volume":"4 ","pages":"Article 100027"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772444124000089/pdfft?md5=a600eb4e2b8daafbcf23daaa6c222080&pid=1-s2.0-S2772444124000089-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141848528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Molten air—A new class of high capacity batteries","authors":"Stuart Licht","doi":"10.1016/j.inv.2024.100032","DOIUrl":"10.1016/j.inv.2024.100032","url":null,"abstract":"<div><div>The present invention relates to rechargeable electrochemical battery cells (molten air batteries). The cells use air and a molten electrolyte, are quasi-reversible (rechargeable) and have the capacity for multiple electrons stored per molecule, have high intrinsic electric energy storage capacities. The present disclosure also relates to the use of such in a range of electronic, transportation and power generation devices, including as greenhouse gas reduction applications, electric car batteries and increased capacity energy storage systems for the electric grid. US patent 10637115 is for the invention of air and carbon or CO<sub>2</sub> Molten Air batteries, while US patent 11094980 is for the invention of air and metal, boron and a variety of salt/Molten Air batteries.</div></div>","PeriodicalId":100728,"journal":{"name":"Invention Disclosure","volume":"4 ","pages":"Article 100032"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142532737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}