{"title":"Design of Unidirectional Vehicular Traffic With a Two-Dimensional Topological Structure","authors":"Hiroya Tanaka;Keita Funayama","doi":"10.1109/OJITS.2024.3458987","DOIUrl":"10.1109/OJITS.2024.3458987","url":null,"abstract":"Vehicular transportation design and control are critical topics of research. In two-dimensional topological systems, edge states exist at the boundary and support transport along the system edges. In this study, we demonstrate the directional flow of vehicular traffic in a hexagonal street network with a two-dimensional topological structure. We model the network structure by the topology of vertices and edges, and vehicular transport as a symmetric random walk between the vertices. We show that the proposed structure provides a macroscopically unidirectional traffic flow to a group of vehicles. Furthermore, we note that such unidirectional properties deteriorate because of the decay of the topological edge mode. To overcome the disappearance of traffic unidirectionarity, we propose a strategy for controlling the entry–exit timing of vehicles in a street network and confirm its effectiveness through simulations. The proposed vehicle management strategy sustainably allows unidirectional traffic in street networks. Our work thus provides a critical building block for designing and controlling transportation networks.","PeriodicalId":100631,"journal":{"name":"IEEE Open Journal of Intelligent Transportation Systems","volume":"5 ","pages":"581-588"},"PeriodicalIF":4.6,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10679227","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142184247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maria Drolence Mwanje;Omprakash Kaiwartya;Abdallah Naser
{"title":"Position Verification in Connected Vehicles for Cyber Resilience Using Geofencing and Fuzzy Logic","authors":"Maria Drolence Mwanje;Omprakash Kaiwartya;Abdallah Naser","doi":"10.1109/OJITS.2024.3453666","DOIUrl":"10.1109/OJITS.2024.3453666","url":null,"abstract":"Position verification is essential in connected and autonomous vehicle technology to enable secure vehicle-to-everything communication. Previous attempts to verify location information have used specific hardware, traffic parameters, and statistical model-based techniques dependent on neighbouring vehicles and roadside infrastructure and whose judgements can be influenced by untrustworthy entities. Considering the back-and-forth communications during verification, these techniques are also unsuitable in the dynamic vehicular networking environment. In this context, this paper proposes a self-reliant trustbased position verification technique using dynamic geofencing, neural network, and Mamdani fuzzy logic controller. The method uses vehicular dynamics, such as distance between the sender and receiver vehicles, magnitude of the speed difference, and direction, to verify the trustworthiness of vehicle positions. An experimental analysis of a dataset of simulated driving scenarios in MATLAB demonstrates that the feedforward neural network records the highest direction classification performance at 99.8% in conjunction with the centroid defuzzification method. Subsequently, further quantitative analysis, including the Receiver Operating Characteristic curve with Area Under Curve and trust level distribution histograms, indicates that the suggested classification model outperforms a random classifier and effectively identifies false position data from the actual during trust computation.","PeriodicalId":100631,"journal":{"name":"IEEE Open Journal of Intelligent Transportation Systems","volume":"5 ","pages":"540-554"},"PeriodicalIF":4.6,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10663467","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142184248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhancing Intelligent Road Target Monitoring: A Novel BGS-YOLO Approach Based on the YOLOv8 Algorithm","authors":"Xingyu Liu;Yuanfeng Chu;Yiheng Hu;Nan Zhao","doi":"10.1109/OJITS.2024.3449698","DOIUrl":"https://doi.org/10.1109/OJITS.2024.3449698","url":null,"abstract":"Road target detection is essential for enhancing vehicle safety, increasing operational efficiency, and optimizing user experience. It also forms a crucial part of autonomous driving and intelligent monitoring systems. However, current technologies face significant limitations in multi-level feature fusion and the accurate identification of key targets in complex data environments. To address these challenges, this paper proposes an innovative algorithmic model called BiFPN GAM SimC2f-YOLO (BGS-YOLO), aimed at improving detection performance. Initially, this paper employs the Bidirectional Feature Pyramid Network (BiFPN) to effectively integrate multi-level features. This integration overcomes the limitations in feature extraction and recognition found in existing target detection algorithms. Following this, this paper introduces the Global Attention Module (GAM), which markedly improves the efficiency and accuracy of extracting key target information in complex data environments. Additionally, this paper innovatively designs the SimAM-C2f (SimC2f) network, further advancing feature expressiveness and fusion efficiency. Experiments on the public COCO dataset demonstrate that the BGS-YOLO model significantly outperforms the existing YOLOv8n model. Notably, it shows a 7.3% increase in mean average precision (mAP) and a 2.4% improvement in accuracy. These results highlight the model’s high precision and swift response in detecting road targets in complex traffic scenarios. Consequently, the BGS-YOLO model has the potential to significantly enhance road safety and contribute to a considerable reduction in traffic accident rates.","PeriodicalId":100631,"journal":{"name":"IEEE Open Journal of Intelligent Transportation Systems","volume":"5 ","pages":"509-519"},"PeriodicalIF":4.6,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10646366","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142143833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Drone Landing and Reinforcement Learning: State-of-Art, Challenges and Opportunities","authors":"José Amendola;Linga Reddy Cenkeramaddi;Ajit Jha","doi":"10.1109/OJITS.2024.3444487","DOIUrl":"https://doi.org/10.1109/OJITS.2024.3444487","url":null,"abstract":"Unmanned aerial vehicles, and special multirotor drones, have shown great relevance in a plethora of missions that require high affordance, field of view, and precision. Their limited payload capacity and autonomy make its landing a crucial task. Despite many attempts in the literature to address drone landing, challenges and open gaps still exist. Reinforcement Learning has gained notoriety in a variety of control problems, with recent proposals for drone landing applications. This work aims to present a systematic literature review on works employing Deep Reinforcement Learning for multirotor drone landing in both static and dynamic platforms. It also revisits Reinforcement Learning Algorithms, the main frameworks and simulators adopted for specific landing operations. The comprehensive analysis performed on reviewed works revealed that there are important untackled challenges when it comes to wind disturbances, unpredictability of moving landing targets, sensor latency, and sim-to-real gap. Finally, we present our critical analysis of how recent state-of-the-art deep learning concepts can be combined with reinforcement learning to leverage the latter in addressing the open gaps in future works.","PeriodicalId":100631,"journal":{"name":"IEEE Open Journal of Intelligent Transportation Systems","volume":"5 ","pages":"520-539"},"PeriodicalIF":4.6,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10637701","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142174012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multi-Objective Optimization of Urban Air Transportation Networks Under Social Considerations","authors":"Nikolas Hohmann;Sebastian Brulin;Jürgen Adamy;Markus Olhofer","doi":"10.1109/OJITS.2024.3443170","DOIUrl":"10.1109/OJITS.2024.3443170","url":null,"abstract":"This work proposes and investigates a solution approach to the urban air transportation network optimization problem, considering the perspectives of different stakeholders, including societal interests. Given logistic hub positions and a set of optimized paths connecting them pairwise, we aim for a Pareto-optimal and three-dimensional air corridor network structure. This work demonstrates a way to merge the given paths into a network and provides a framework to optimize the network further regarding multiple objectives. It proposes three objective functions that evaluate the network from the economic perspectives of network providers and users and the city residents’ social point of view. Using geospatial data from Frankfurt, Germany, we conducted different experiments including and excluding the social objective function under a varying input set of pre-optimized paths. Our analysis showed that taking social aspects into account results in traffic networks whose increase in social acceptance far outweighs the extra monetary costs. We conclude that it is beneficial to integrate social criteria into optimization problems when the solutions obtained are the basis for decisions in the area of conflict between the economy and human welfare.","PeriodicalId":100631,"journal":{"name":"IEEE Open Journal of Intelligent Transportation Systems","volume":"5 ","pages":"589-602"},"PeriodicalIF":4.6,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10634851","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142184249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Franca Rocco Di Torrepadula;Sergio Di Martino;Nicola Mazzocca;Paolo Sannino
{"title":"A Reference Architecture for Data-Driven Intelligent Public Transportation Systems","authors":"Franca Rocco Di Torrepadula;Sergio Di Martino;Nicola Mazzocca;Paolo Sannino","doi":"10.1109/OJITS.2024.3441048","DOIUrl":"10.1109/OJITS.2024.3441048","url":null,"abstract":"Smart cities include complex ICT ecosystems, whose definition requires the cooperation of several software systems. Among them, Intelligent Public Transportation Systems (IPTS) aim to effectively exploit public transit resources. Still, adopting an IPTS is non-trivial. Off-the-shelf IPTS are often tied to specific technologies and, thus, not easy to integrate within existing software ecosystems. Moreover, despite IPTS introduce several peculiar issues, there is a lack of domain-specific reference architectures, which would significantly ease the work of practitioners. To fill this gap, starting from the experience gained with the Hitachi Rail company in deploying a large-scale IPTS, we identify a set of requirements for IPTS, and propose a domain-specific reference architecture, compliant with these requirements, whose primary objective is facilitating and standardizing the design of IPTS, by providing guidelines to IPTS designers. Consequently, it eases also the interoperability among different IPTSs. As an example of an IPTS obtainable from the architecture, we present a solution currently deployed by Hitachi in a major Italian city. Still, being independent from the specific considered urban scenario, the architecture can be easily instantiated in different cities with similar needs. Finally, we discuss some research challenges which should be further investigated in this domain.","PeriodicalId":100631,"journal":{"name":"IEEE Open Journal of Intelligent Transportation Systems","volume":"5 ","pages":"469-482"},"PeriodicalIF":4.6,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10632072","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141944413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Secure Object Detection Technique for Intelligent Transportation Systems","authors":"Jueal Mia;M. Hadi Amini","doi":"10.1109/OJITS.2024.3440876","DOIUrl":"10.1109/OJITS.2024.3440876","url":null,"abstract":"Federated Learning is a decentralized machine learning technique that creates a global model by aggregating local models from multiple edge devices without a need to access the local data. However, due to the distributed nature of federated learning, there is a larger attack surface, making cyber-attack detection and defense challenging. Although prior works developed various defense strategies to address security issues in federated learning settings, most approaches fail to mitigate cyber-attacks due to the diverse characteristics of the attack, edge devices, and data distribution. To address this issue, this paper develops a hybrid privacy-preserving algorithm to safeguard federated learning methods against malicious attacks in Intelligent Transportation Systems, considering object detection as a downstream machine learning task. This algorithm involves the edge devices (e.g., autonomous vehicles) and road side units to collaboratively train their model while maintaining the privacy of their respective data. Furthermore, this hybrid algorithm provides robust security against data poisoning-based model replacement and inference attacks throughout the training phase. We evaluated our model using the CIFAR10 and LISA traffic light dataset, demonstrating its ability to mitigate malicious attacks with minimal impact on the performance of main tasks.","PeriodicalId":100631,"journal":{"name":"IEEE Open Journal of Intelligent Transportation Systems","volume":"5 ","pages":"495-508"},"PeriodicalIF":4.6,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10630660","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141944414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhancing Vehicular Network Efficiency: The Impact of Object Data Inclusion in the Collective Perception Service","authors":"Andreia Figueiredo;Pedro Rito;Miguel Luís;Susana Sargento","doi":"10.1109/OJITS.2024.3437206","DOIUrl":"10.1109/OJITS.2024.3437206","url":null,"abstract":"As the automotive industry evolves, integrating intelligent technologies and cooperative services in vehicular networks has become crucial to enhance road safety and autonomous driving capabilities. However, this integration can strain networks, particularly when exchanging a high volume of object information. This work studies the impact of the Collective Perception Messages (CPMs) size on the vehicular network performance. We introduce an algorithm aimed at optimizing the efficiency of extra object data inclusion in CPMs. The focus is on evaluating the vehicular network efficiency by selectively including extra objects within the available message space, strategically enhancing the transmission of more objects. This optimization not only reduces the need for constant CPM generation, but also maximizes the efficiency of information exchange. Using real-world vehicular data, this approach’s effectiveness in improving the Collective Perception Service (CPS) is demonstrated, showing a significant improvement when compared to traditional CPS standard: the proposed algorithm is capable of transmitting 14% more object information while using 2.6% fewer bytes. In addition, if we were to maintain the same number of bytes used in transmission as the CPS standard, our algorithm would result in a 23% increase in transmitted object information. Furthermore, the additional delay incurred by the algorithm is minimal, with an average of just 3 ms.","PeriodicalId":100631,"journal":{"name":"IEEE Open Journal of Intelligent Transportation Systems","volume":"5 ","pages":"454-468"},"PeriodicalIF":4.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10620279","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141880577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Real-Time Diagnostic Technique for AI-Enabled System","authors":"Hiroaki Itsuji;Takumi Uezono;Tadanobu Toba;Subrata Kumar Kundu","doi":"10.1109/OJITS.2024.3435712","DOIUrl":"10.1109/OJITS.2024.3435712","url":null,"abstract":"The last few decades have witnessed a dramatic evolution of Artificial Intelligence (AI) algorithms, represented by Deep Neural Networks (DNNs), resulting in AI-enabled systems being significantly dominant in various fields, including robotics, healthcare, and mobility. AI-enabled systems are currently used even for safety-critical applications, including automated driving, where they encounter reliability challenges from both hardware (HW) and software (SW) perspectives. However, there is no effective technique available that can diagnose HW and SW of AI-enabled systems in real-time during operation. Therefore, this paper proposes an intelligent real-time diagnostic technique for detecting HW and SW anomalies of AI-enabled systems and continuously improving the SW quality during operation. The proposed technique can detect HW anomalies to avoid unexpected changes in AI parameters and subsequent AI performance degradation using single context data with a detection accuracy of more than 92%. The proposed technique can also detect SW anomalies and identify edge cases in real-time, which could result in performance degradation by more than 50% compared to normal conditions. The identified edge cases can be used to continuously enhance the SW quality. Experimental results show the effectiveness of the technique for practical applications and thus can contribute to realize reliable and improved AI-enabled systems.","PeriodicalId":100631,"journal":{"name":"IEEE Open Journal of Intelligent Transportation Systems","volume":"5 ","pages":"483-494"},"PeriodicalIF":4.6,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10614714","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141872302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Efficiently Modeling Lateral Vehicle Movement Including its Temporal Interrelations Using a Two-Level Stochastic Model","authors":"N. Neis;J. Beyerer","doi":"10.1109/OJITS.2024.3435078","DOIUrl":"10.1109/OJITS.2024.3435078","url":null,"abstract":"The lateral movement of vehicles within their lane under homogeneous traffic conditions is decisive for the range of vision of vehicle sensors. It significantly contributes to the maximum situational awareness an automated driving function can achieve. Given the integral role that simulations play in the validation of automated driving functions, the development of models that accurately describe the lateral movement of vehicles within their lane becomes essential. A few models have already been proposed in literature that address this task. Existing models, however, exhibit limitations when it comes to their usage for the virtual validation of automated driving functions such as the replication of general instead of driver-specific behavior and complex calibration methods. Furthermore, the metrics used for evaluation focus on measuring the accordance of the overall lateral offset and speed distribution and do not take into account the temporal course of the lateral offset profiles. Within this work, we introduce a two-level stochastic model addressing the identified limitations. We further present a strategy suitable for evaluating the low-level characteristics of the generated lateral offset profiles relevant for validating an automated driving function such as a cut-in detection function within simulations. The model’s capabilities are demonstrated based on five single driver datasets. It is shown that the model allows for efficient calibration, is able to replicate the behavior of these drivers, and is characterized by short runtimes. This makes it suitable for the virtual validation of automated driving functions.","PeriodicalId":100631,"journal":{"name":"IEEE Open Journal of Intelligent Transportation Systems","volume":"5 ","pages":"566-580"},"PeriodicalIF":4.6,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10612773","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141872303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}