多梯队枢纽和路线优化的超启发式方法:模型、有效不等式和案例研究

IF 4.6 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Kassem Danach;Hassan Harb;Badih Baz;Abbass Nasser
{"title":"多梯队枢纽和路线优化的超启发式方法:模型、有效不等式和案例研究","authors":"Kassem Danach;Hassan Harb;Badih Baz;Abbass Nasser","doi":"10.1109/OJITS.2025.3565209","DOIUrl":null,"url":null,"abstract":"Efficient logistics management is critical in the modern global supply chain, and this study introduces an advanced hyperheuristic approach to the Multi-Echelon Hub and Routing Optimization (MEHRO) problem. The MEHRO problem encompasses optimizing hub locations and vehicle routes while balancing cost efficiency, service quality, and environmental sustainability. A novel mathematical model integrates transportation, hub setup, and inventory costs, strengthened by valid inequalities to enhance computational efficiency. The hyperheuristic framework dynamically selects from a pool of low-level heuristics, adapting strategies to varying problem instances. A real-world case study validates the model’s effectiveness, demonstrating significant cost reductions, improved service levels, and minimized environmental impact compared to traditional methods. This work sets a foundation for scalable and adaptive solutions in logistics and combinatorial optimization, catering to the evolving demands of global supply chain management.","PeriodicalId":100631,"journal":{"name":"IEEE Open Journal of Intelligent Transportation Systems","volume":"6 ","pages":"781-791"},"PeriodicalIF":4.6000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10979948","citationCount":"0","resultStr":"{\"title\":\"A Hyperheuristic Approach to Multi-Echelon Hub and Routing Optimization: Model, Valid Inequalities, and Case Study\",\"authors\":\"Kassem Danach;Hassan Harb;Badih Baz;Abbass Nasser\",\"doi\":\"10.1109/OJITS.2025.3565209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Efficient logistics management is critical in the modern global supply chain, and this study introduces an advanced hyperheuristic approach to the Multi-Echelon Hub and Routing Optimization (MEHRO) problem. The MEHRO problem encompasses optimizing hub locations and vehicle routes while balancing cost efficiency, service quality, and environmental sustainability. A novel mathematical model integrates transportation, hub setup, and inventory costs, strengthened by valid inequalities to enhance computational efficiency. The hyperheuristic framework dynamically selects from a pool of low-level heuristics, adapting strategies to varying problem instances. A real-world case study validates the model’s effectiveness, demonstrating significant cost reductions, improved service levels, and minimized environmental impact compared to traditional methods. This work sets a foundation for scalable and adaptive solutions in logistics and combinatorial optimization, catering to the evolving demands of global supply chain management.\",\"PeriodicalId\":100631,\"journal\":{\"name\":\"IEEE Open Journal of Intelligent Transportation Systems\",\"volume\":\"6 \",\"pages\":\"781-791\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10979948\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Intelligent Transportation Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10979948/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Intelligent Transportation Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10979948/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

高效的物流管理在现代全球供应链中至关重要,本研究引入了一种先进的超启发式方法来解决多梯次枢纽和路线优化(MEHRO)问题。MEHRO问题包括优化枢纽位置和车辆路线,同时平衡成本效率、服务质量和环境可持续性。一个新的数学模型集成了运输、枢纽设置和库存成本,并通过有效不等式加强了计算效率。超启发式框架从一组低级启发式中动态选择,使策略适应不同的问题实例。一个现实世界的案例研究验证了该模型的有效性,证明了与传统方法相比,显著降低了成本,提高了服务水平,并最大限度地减少了对环境的影响。这项工作为物流和组合优化中的可扩展和自适应解决方案奠定了基础,以满足全球供应链管理不断变化的需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Hyperheuristic Approach to Multi-Echelon Hub and Routing Optimization: Model, Valid Inequalities, and Case Study
Efficient logistics management is critical in the modern global supply chain, and this study introduces an advanced hyperheuristic approach to the Multi-Echelon Hub and Routing Optimization (MEHRO) problem. The MEHRO problem encompasses optimizing hub locations and vehicle routes while balancing cost efficiency, service quality, and environmental sustainability. A novel mathematical model integrates transportation, hub setup, and inventory costs, strengthened by valid inequalities to enhance computational efficiency. The hyperheuristic framework dynamically selects from a pool of low-level heuristics, adapting strategies to varying problem instances. A real-world case study validates the model’s effectiveness, demonstrating significant cost reductions, improved service levels, and minimized environmental impact compared to traditional methods. This work sets a foundation for scalable and adaptive solutions in logistics and combinatorial optimization, catering to the evolving demands of global supply chain management.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信