{"title":"Anytime Optimal Trajectory Repairing for Autonomous Vehicles","authors":"Kailin Tong;Martin Steinberger;Martin Horn;Selim Solmaz;Daniel Watzenig","doi":"10.1109/OJITS.2025.3563823","DOIUrl":null,"url":null,"abstract":"Adapting to dynamically changing situations remains a pivotal challenge for automated driving systems, which demand robust and efficient solutions. Occasional perception errors inherent in artificial intelligence further complicate the task. Whereas traditional motion planning algorithms address this challenge by replanning the entire trajectory, a significantly more efficient strategy is to repair only the flawed segments. Our paper introduces a groundbreaking approach by formulating an optimal trajectory repairing problem and proposing an innovative and efficient framework for critical timing detection and trajectory repairing. This trajectory repairing specifically employs Bernstein basis polynomials in both 2D distance-time and 3D spatiotemporal spaces. A distinctive feature of our method is the use of an anytime grid search to determine a sub-optimal time-to-repair, which contrasts with previous methods that relied on manually tuned or fixed repair times, limiting both flexibility and robustness. A statistical analysis of 100 scenarios demonstrates that our trajectory-repairing framework outperforms the path-speed decoupled repairing framework in terms of scenario success rate. Furthermore, we introduce a novel algorithm for driving corridor generation that more accurately approximates the collision-free space than state-of-the-art work. The proposed approach has broad potential for application in embedded systems across various autonomous platforms.","PeriodicalId":100631,"journal":{"name":"IEEE Open Journal of Intelligent Transportation Systems","volume":"6 ","pages":"537-553"},"PeriodicalIF":4.6000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10979545","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Intelligent Transportation Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10979545/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Adapting to dynamically changing situations remains a pivotal challenge for automated driving systems, which demand robust and efficient solutions. Occasional perception errors inherent in artificial intelligence further complicate the task. Whereas traditional motion planning algorithms address this challenge by replanning the entire trajectory, a significantly more efficient strategy is to repair only the flawed segments. Our paper introduces a groundbreaking approach by formulating an optimal trajectory repairing problem and proposing an innovative and efficient framework for critical timing detection and trajectory repairing. This trajectory repairing specifically employs Bernstein basis polynomials in both 2D distance-time and 3D spatiotemporal spaces. A distinctive feature of our method is the use of an anytime grid search to determine a sub-optimal time-to-repair, which contrasts with previous methods that relied on manually tuned or fixed repair times, limiting both flexibility and robustness. A statistical analysis of 100 scenarios demonstrates that our trajectory-repairing framework outperforms the path-speed decoupled repairing framework in terms of scenario success rate. Furthermore, we introduce a novel algorithm for driving corridor generation that more accurately approximates the collision-free space than state-of-the-art work. The proposed approach has broad potential for application in embedded systems across various autonomous platforms.