Fundamental Plasma Physics最新文献

筛选
英文 中文
Thermal plasma processing of technologically important materials 重要技术材料的热等离子加工
Fundamental Plasma Physics Pub Date : 2024-02-22 DOI: 10.1016/j.fpp.2024.100039
Shalaka A. Kamble, Sanket Jangale, Somnath Bhopale, S.V. Bhoraskar, M.A. More, V.L. Mathe
{"title":"Thermal plasma processing of technologically important materials","authors":"Shalaka A. Kamble,&nbsp;Sanket Jangale,&nbsp;Somnath Bhopale,&nbsp;S.V. Bhoraskar,&nbsp;M.A. More,&nbsp;V.L. Mathe","doi":"10.1016/j.fpp.2024.100039","DOIUrl":"https://doi.org/10.1016/j.fpp.2024.100039","url":null,"abstract":"<div><p>Thermal plasma is one of the upcoming powerful tools used for materials processing. It covers a wide range of technological applications such as synthesis of various refractory ceramic materials, metals and alloys, deposition of coatings, high temperature processing of materials as well as disintegration of waste materials. Representative technologically important material systems viz rare earth hexaboride (e.g. GdB<sub>6</sub>) and carbonaceous materials are focus of the present manuscript. Both the material systems have been processed using DC thermal plasma route and characterized thoroughly for structural, morphological, surface properties using XRD, TEM, XPS respectively. Morphology of GdB<sub>6</sub> has been tailored by varying plasma parameters during synthesis. Further, these GdB<sub>6</sub> powder were investigated for electron emission performance using Field Electron Emission and maximum current density of 0.5 mA/cm<sup>2</sup> was noted for the nanocrystalline GdB<sub>6</sub> sample. Feasibility of thermal plasmas for production of nanocrystalline GdB<sub>6</sub> and processing of a bio-waste to obtain technologically important carbonaceous materials has also been explored.</p></div>","PeriodicalId":100558,"journal":{"name":"Fundamental Plasma Physics","volume":"10 ","pages":"Article 100039"},"PeriodicalIF":0.0,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772828524000049/pdfft?md5=e25eba63e7c12d8be72b88165c195445&pid=1-s2.0-S2772828524000049-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139992704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The self-consistent approach in cold plasma kinetics: From negative ion sources to molecular activation 冷等离子体动力学中的自洽方法:从负离子源到分子活化
Fundamental Plasma Physics Pub Date : 2024-01-28 DOI: 10.1016/j.fpp.2024.100037
M Capitelli , R Celiberto , G Colonna , A Laricchiuta , L D Pietanza
{"title":"The self-consistent approach in cold plasma kinetics: From negative ion sources to molecular activation","authors":"M Capitelli ,&nbsp;R Celiberto ,&nbsp;G Colonna ,&nbsp;A Laricchiuta ,&nbsp;L D Pietanza","doi":"10.1016/j.fpp.2024.100037","DOIUrl":"https://doi.org/10.1016/j.fpp.2024.100037","url":null,"abstract":"<div><p>The paper collects and discusses the results obtained in the theoretical investigation of cold plasmas by using a state-to-state self-consistent kinetic approach, coupling chemistry and free electron kinetics. Examples are selected, not only to review the most recent advancements made in updating and extending the chemical model, but also to highlight the role played in all these systems by excited states, either vibrational or electronic, in affecting the plasma evolution in the discharge and in the post-discharge phases in different discharge configurations. The response of the kinetic simulation to the accuracy of the dynamical data describing the collisional processes, to the theoretical scheme adopted for the vibrational levels of molecules, and to the inclusion of the relevant dissociation channels, is discussed also in the light of the comparison with experiments for model validation.</p></div>","PeriodicalId":100558,"journal":{"name":"Fundamental Plasma Physics","volume":"9 ","pages":"Article 100037"},"PeriodicalIF":0.0,"publicationDate":"2024-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772828524000025/pdfft?md5=bac4356e73bd544d81001b1c8655031e&pid=1-s2.0-S2772828524000025-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139675685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the energy spectrum evolution of electrons undergoing radiation cooling 关于电子在辐射冷却过程中的能谱演变
Fundamental Plasma Physics Pub Date : 2024-01-24 DOI: 10.1016/j.fpp.2024.100036
S.V. Bulanov , G.M. Grittani , R. Shaisultanov , T.Z. Esirkepov , C.P. Ridgers , S.S. Bulanov , B.K. Russell , A.G.R. Thomas
{"title":"On the energy spectrum evolution of electrons undergoing radiation cooling","authors":"S.V. Bulanov ,&nbsp;G.M. Grittani ,&nbsp;R. Shaisultanov ,&nbsp;T.Z. Esirkepov ,&nbsp;C.P. Ridgers ,&nbsp;S.S. Bulanov ,&nbsp;B.K. Russell ,&nbsp;A.G.R. Thomas","doi":"10.1016/j.fpp.2024.100036","DOIUrl":"https://doi.org/10.1016/j.fpp.2024.100036","url":null,"abstract":"<div><p>Radiative cooling of electron beams interacting with counter-propagating electromagnetic waves is analyzed, taking into account the quantum modification of the radiation friction force. Central attention is paid to the evolution of the energy spectrum of electrons accelerated by the laser wake field acceleration mechanism. As an electron beam loses energy to radiation, the mean energy decreases and the form of the energy distribution also changes due to quantum-mechanical spectral broadening.</p></div>","PeriodicalId":100558,"journal":{"name":"Fundamental Plasma Physics","volume":"9 ","pages":"Article 100036"},"PeriodicalIF":0.0,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772828524000013/pdfft?md5=63ddd370569c84bb5e44937f8489c06c&pid=1-s2.0-S2772828524000013-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139674615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Temperature dependence of beam on plasma stopping power in the resonance regions of fusion reactions 聚变反应共振区等离子体阻挡功率与束流温度的关系
Fundamental Plasma Physics Pub Date : 2023-12-10 DOI: 10.1016/j.fpp.2023.100032
Keh-Fei Liu
{"title":"Temperature dependence of beam on plasma stopping power in the resonance regions of fusion reactions","authors":"Keh-Fei Liu","doi":"10.1016/j.fpp.2023.100032","DOIUrl":"https://doi.org/10.1016/j.fpp.2023.100032","url":null,"abstract":"<div><p>A recent proposal of accelerator based fusion reactor considers a scheme where an ion beam from the accelerator hits the target plasma on the resonance of the fusion reaction so that the reactivity (<em>σv</em>) can be an order of magnitude larger than that of a thermonuclear reactor. One of the important inputs is the stopping power which is needed to assess the energy loss of the beam in the plasma. In this work, we shall use the analytic formulation of Brown, Preston and Singleton <span>[1]</span> to calculate the temperature dependence of the stopping power due to the target <span><math><mi>t</mi><mo>,</mo><mmultiscripts><mrow><mi>H</mi></mrow><mrow><mi>e</mi></mrow><none></none><mprescripts></mprescripts><none></none><mrow><mn>3</mn></mrow></mmultiscripts></math></span>, and <span><math><mmultiscripts><mrow><mi>B</mi></mrow><mprescripts></mprescripts><none></none><mrow><mn>11</mn></mrow></mmultiscripts></math></span> plasmas in the resonance regions of their respective fusion reactions, i.e., <span><math><mi>d</mi><mo>+</mo><mi>t</mi><mo>→</mo><mi>n</mi><mo>+</mo><mi>α</mi><mo>,</mo><mi>d</mi><mo>+</mo><msup><mrow></mrow><mrow><mn>3</mn></mrow></msup><msub><mrow><mi>H</mi></mrow><mrow><mi>e</mi></mrow></msub><mo>→</mo><mi>p</mi><mo>+</mo><mi>α</mi></math></span>, and <span><math><mi>p</mi><mo>+</mo><msup><mrow></mrow><mrow><mn>11</mn></mrow></msup><mi>B</mi><mo>→</mo><mn>3</mn><mi>α</mi></math></span>. It is found that the calculated stopping power, especially when the quantum corrections are included, does not go down with temperature as fast at <span><math><msup><mrow><mi>T</mi></mrow><mrow><mo>−</mo><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msup></math></span>. Instead it decreases slower, more like <span><math><msup><mrow><mi>T</mi></mrow><mrow><mo>−</mo><mi>x</mi></mrow></msup></math></span> with <span><math><mi>x</mi><mo>≤</mo><mn>1</mn></math></span> in the range of T from ∼ 5 to 50 keV for <em>d</em> on <em>t</em> and <span><math><mmultiscripts><mrow><mi>H</mi></mrow><mrow><mi>e</mi></mrow><none></none><mprescripts></mprescripts><none></none><mrow><mn>3</mn></mrow></mmultiscripts></math></span> plasmas around their resonance energies.</p></div>","PeriodicalId":100558,"journal":{"name":"Fundamental Plasma Physics","volume":"9 ","pages":"Article 100032"},"PeriodicalIF":0.0,"publicationDate":"2023-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772828523000250/pdfft?md5=241a928f1c778f23c5f978e06fee0269&pid=1-s2.0-S2772828523000250-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138570393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of the melting line in the two-dimensional complex plasmas using an unsupervised machine learning method 利用无监督机器学习方法识别二维复杂等离子体中的熔化线
Fundamental Plasma Physics Pub Date : 2023-11-30 DOI: 10.1016/j.fpp.2023.100031
Hu-Sheng Li , He Huang , Wei Yang , Cheng-Ran Du
{"title":"Identification of the melting line in the two-dimensional complex plasmas using an unsupervised machine learning method","authors":"Hu-Sheng Li ,&nbsp;He Huang ,&nbsp;Wei Yang ,&nbsp;Cheng-Ran Du","doi":"10.1016/j.fpp.2023.100031","DOIUrl":"https://doi.org/10.1016/j.fpp.2023.100031","url":null,"abstract":"<div><p>Machine learning methods have been widely used in the investigations of the complex plasmas. In this paper, we demonstrate that the unsupervised convolutional neural network can be applied to obtain the melting line in the two-dimensional complex plasmas based on the Langevin dynamics simulation results. The training samples do not need to be labeled. The resulting melting line coincides with those obtained by the analysis of hexatic order parameter and supervised machine learning method.</p></div>","PeriodicalId":100558,"journal":{"name":"Fundamental Plasma Physics","volume":"9 ","pages":"Article 100031"},"PeriodicalIF":0.0,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772828523000249/pdfft?md5=c63aa94f1004a4f41799e2b344ba9533&pid=1-s2.0-S2772828523000249-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138501364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Existence of Korteweg-de Vries solitons and relevance of relativistic effects in a dusty electron-ion plasma 尘埃电子-离子等离子体中Korteweg-de Vries孤子的存在与相对论效应的相关性
Fundamental Plasma Physics Pub Date : 2023-11-23 DOI: 10.1016/j.fpp.2023.100030
Maricarmen A. Winkler , Víctor Muñoz , Felipe A. Asenjo
{"title":"Existence of Korteweg-de Vries solitons and relevance of relativistic effects in a dusty electron-ion plasma","authors":"Maricarmen A. Winkler ,&nbsp;Víctor Muñoz ,&nbsp;Felipe A. Asenjo","doi":"10.1016/j.fpp.2023.100030","DOIUrl":"https://doi.org/10.1016/j.fpp.2023.100030","url":null,"abstract":"<div><p>Nonlinear effects in the propagation of perturbations in a dusty electron-ion plasma are studied, considering fully relativistic wave motion. A multifluid model is considered for the particles, from which a KdV equation can be derived. In general, two different soliton solutions are found depending on the kind of dispersion of the KdV equation. We study when the dispersion coefficient of this equation is positive. In this case, two kinds of behavior are possible, one associated with a slow wave mode, another with a fast wave mode. It is shown that, depending on the value of the system parameters, compressive and/or rarefactive solitons, or no soliton at all, can be found and that relativistic effects for ions are much more relevant than for electrons. It is also found that relativistic effects can strongly decrease the soliton amplitude for the slow mode, whereas for the fast mode they can lead to compressive-rarefactive soliton transitions and vice versa, depending on the dust charge density in both modes.</p></div>","PeriodicalId":100558,"journal":{"name":"Fundamental Plasma Physics","volume":"9 ","pages":"Article 100030"},"PeriodicalIF":0.0,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772828523000237/pdfft?md5=a55773a348dd396b91a28341ed8cdac5&pid=1-s2.0-S2772828523000237-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138501400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Confining and escaping magnetic field lines in tokamaks: Analysis via symplectic maps 托卡马克中的约束和逃逸磁力线:通过辛映射进行分析
Fundamental Plasma Physics Pub Date : 2023-10-17 DOI: 10.1016/j.fpp.2023.100027
Matheus S. Palmero, Iberê L. Caldas
{"title":"Confining and escaping magnetic field lines in tokamaks: Analysis via symplectic maps","authors":"Matheus S. Palmero,&nbsp;Iberê L. Caldas","doi":"10.1016/j.fpp.2023.100027","DOIUrl":"https://doi.org/10.1016/j.fpp.2023.100027","url":null,"abstract":"<div><p>In magnetically confined plasma, it is possible to qualitatively describe the magnetic field configuration via phase spaces of suitable symplectic maps. These phase spaces are of mixed type, where chaos coexists with regular motion, and the complete understanding of the complex dynamical evolution of chaotic trajectories is a challenge that, when overcome, may provide further knowledge into the behaviour of confined fusion plasma. This work presents two numerical investigations into characteristics of mixed phase spaces which model distinct magnetic configurations in tokamaks under different perturbation regimes. The first approach relies on a recurrence-based analysis of ensembles of chaotic trajectories to detect open field lines that widely differ from the average. The second focuses on the transient dynamical behaviour of field lines before they escape the systems. These two methods provide insights into the influence of stickiness and invariant manifolds on the evolution of chaotic trajectories, improving our understanding of how these features affect transport and diffusion properties in mixed phase spaces. These theoretical and numerical approaches may enhance our comprehension of confined plasma behaviour and plasma-wall interactions.</p></div>","PeriodicalId":100558,"journal":{"name":"Fundamental Plasma Physics","volume":"8 ","pages":"Article 100027"},"PeriodicalIF":0.0,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67739336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Symmetric Compton Scattering: A way towards plasma heating and tunable mono-chromatic gamma-rays 对称康普顿散射:一种实现等离子体加热和可调谐单色伽马射线的方法
Fundamental Plasma Physics Pub Date : 2023-10-01 DOI: 10.1016/j.fpp.2023.100026
L. Serafini , A. Bacci , C. Curatolo , I. Drebot , V. Petrillo , A. Puppin , M. Rossetti Conti , S. Samsam
{"title":"Symmetric Compton Scattering: A way towards plasma heating and tunable mono-chromatic gamma-rays","authors":"L. Serafini ,&nbsp;A. Bacci ,&nbsp;C. Curatolo ,&nbsp;I. Drebot ,&nbsp;V. Petrillo ,&nbsp;A. Puppin ,&nbsp;M. Rossetti Conti ,&nbsp;S. Samsam","doi":"10.1016/j.fpp.2023.100026","DOIUrl":"https://doi.org/10.1016/j.fpp.2023.100026","url":null,"abstract":"<div><p>This paper explores the transition between Compton Scattering and Inverse Compton Scattering (ICS), which is characterized by an equal exchange of energy and momentum between the colliding particles (electrons and photons). This regime has been called Symmetric Compton Scattering (SCS) and has the unique property of eliminating the energy-angle correlation of scattered photons, and, when the electron recoil is large, transferring monochromaticity from one colliding beam to the other, resulting in back-scattered photon beams that are intrinsically monochromatic. The paper suggests that large-recoil SCS or quasi-SCS can be used to design compact intrinsic monochromatic <em>γ</em>-ray sources based on compact linacs, thus avoiding the use of GeV-class electron beams together with powerful laser/optical systems as those typically required for ICS sources. Furthermore, at low recoil and low energy collisions (in the 10 keV energy range), SCS can be exploited to heat the colliding electron beam, which is widely scattered with large transverse momenta over the entire solid angle, offering a technique to trap electrons into magnetic bottles for plasma heating.</p></div>","PeriodicalId":100558,"journal":{"name":"Fundamental Plasma Physics","volume":"7 ","pages":"Article 100026"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50203527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A D-3He fusion reactor for the mitigation of global warming 用于减缓全球变暖的D-3He聚变反应堆
Fundamental Plasma Physics Pub Date : 2023-08-01 DOI: 10.1016/j.fpp.2023.100022
E. Mazzucato
{"title":"A D-3He fusion reactor for the mitigation of global warming","authors":"E. Mazzucato","doi":"10.1016/j.fpp.2023.100022","DOIUrl":"https://doi.org/10.1016/j.fpp.2023.100022","url":null,"abstract":"<div><p>Since a fusion reactor using the Deuterium-Tritium fuel cycle cannot be a source of clean energy because of the deleterious effects of energetic neutrons carrying 80% of the energy output, and it is very doubtful that it will be able to achieve Tritium self-sufficiency because of an extremely problematic and still unproven breeding procedure, this paper proposes a new reactor scheme capable of confining hot and dense plasmas using the Deuterium – Helium-3 fuel cycle. Such a reactor must be considered a source of clean energy because of its very low level of neutrons production, and its fuel is available in large quantity since we can get the needed Deuterium from seawater and likewise Helium-3 from the moon, as it was found from the samples of lunar soil brought back by the astronauts of the Apollo Mission. The proposed reactor consists of two 100 m long cylindrical plasmas, connected by semicircular sections to form a racetrack configuration. It should be capable of producing from 16 to 20 GW of fusion power when operating with an electron density of 3 × 10<sup>20</sup> m<sup>−3</sup>, a magnetic field of 10 T and average temperatures from 40 to 45 keV. Out of this power, up to 10 GW will be used for replacing the loss of electron energy from bremsstrahlung radiation, with a consequent reduction in the reactor power output. However, such a loss could be mitigated by a partial recovery of the energy plasma radiation.</p></div>","PeriodicalId":100558,"journal":{"name":"Fundamental Plasma Physics","volume":"6 ","pages":"Article 100022"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50204580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Collisionless relativistic magnetic reconnection driven by electron vortices in laser-plasma interaction 激光等离子体相互作用中电子涡旋驱动的无碰撞相对论性磁重联
Fundamental Plasma Physics Pub Date : 2023-08-01 DOI: 10.1016/j.fpp.2023.100018
Yan-Jun Gu , Kirill V. Lezhnin , Sergei V. Bulanov
{"title":"Collisionless relativistic magnetic reconnection driven by electron vortices in laser-plasma interaction","authors":"Yan-Jun Gu ,&nbsp;Kirill V. Lezhnin ,&nbsp;Sergei V. Bulanov","doi":"10.1016/j.fpp.2023.100018","DOIUrl":"https://doi.org/10.1016/j.fpp.2023.100018","url":null,"abstract":"<div><p>Magnetic reconnection (MR) is a fundamental process in space and laboratory plasmas. The appearance of high power lasers opens a new way to investigate MR under the relativistic condition. In this paper, relativistic collisionless MR driven by two ultra-intense lasers and a pair of asymmetric targets is studied numerically via the kinetic simulations. The static magnetic fields produced by the electron vortex structures with opposite magnetic polarities approach each other driven by the magnetic pressure and the density gradient. The antiparallel magnetic fields annihilate accompanied with the topological variation and the corresponding magnetic field energy is being dissipated to the kinetic energy of the nonthermal charged particles. Besides the outflows along the current sheet, a fast particle bunch is accelerated perpendicularly contributed by the displacement current.</p></div>","PeriodicalId":100558,"journal":{"name":"Fundamental Plasma Physics","volume":"6 ","pages":"Article 100018"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50204579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信