Existence of Korteweg-de Vries solitons and relevance of relativistic effects in a dusty electron-ion plasma

Maricarmen A. Winkler , Víctor Muñoz , Felipe A. Asenjo
{"title":"Existence of Korteweg-de Vries solitons and relevance of relativistic effects in a dusty electron-ion plasma","authors":"Maricarmen A. Winkler ,&nbsp;Víctor Muñoz ,&nbsp;Felipe A. Asenjo","doi":"10.1016/j.fpp.2023.100030","DOIUrl":null,"url":null,"abstract":"<div><p>Nonlinear effects in the propagation of perturbations in a dusty electron-ion plasma are studied, considering fully relativistic wave motion. A multifluid model is considered for the particles, from which a KdV equation can be derived. In general, two different soliton solutions are found depending on the kind of dispersion of the KdV equation. We study when the dispersion coefficient of this equation is positive. In this case, two kinds of behavior are possible, one associated with a slow wave mode, another with a fast wave mode. It is shown that, depending on the value of the system parameters, compressive and/or rarefactive solitons, or no soliton at all, can be found and that relativistic effects for ions are much more relevant than for electrons. It is also found that relativistic effects can strongly decrease the soliton amplitude for the slow mode, whereas for the fast mode they can lead to compressive-rarefactive soliton transitions and vice versa, depending on the dust charge density in both modes.</p></div>","PeriodicalId":100558,"journal":{"name":"Fundamental Plasma Physics","volume":"9 ","pages":"Article 100030"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772828523000237/pdfft?md5=a55773a348dd396b91a28341ed8cdac5&pid=1-s2.0-S2772828523000237-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamental Plasma Physics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772828523000237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nonlinear effects in the propagation of perturbations in a dusty electron-ion plasma are studied, considering fully relativistic wave motion. A multifluid model is considered for the particles, from which a KdV equation can be derived. In general, two different soliton solutions are found depending on the kind of dispersion of the KdV equation. We study when the dispersion coefficient of this equation is positive. In this case, two kinds of behavior are possible, one associated with a slow wave mode, another with a fast wave mode. It is shown that, depending on the value of the system parameters, compressive and/or rarefactive solitons, or no soliton at all, can be found and that relativistic effects for ions are much more relevant than for electrons. It is also found that relativistic effects can strongly decrease the soliton amplitude for the slow mode, whereas for the fast mode they can lead to compressive-rarefactive soliton transitions and vice versa, depending on the dust charge density in both modes.

尘埃电子-离子等离子体中Korteweg-de Vries孤子的存在与相对论效应的相关性
研究了微扰在尘埃电子-离子等离子体中传播的非线性效应,考虑了完全相对论性波动。考虑了粒子的多流体模型,由此可以导出KdV方程。一般来说,根据KdV方程的色散类型,可以找到两种不同的孤子解。我们研究了该方程的色散系数为正的情况。在这种情况下,两种行为是可能的,一种与慢波模式有关,另一种与快波模式有关。结果表明,根据系统参数的不同,可以发现压缩孤子和/或稀薄孤子,或者根本没有孤子,并且离子的相对论效应比电子的相对论效应更相关。我们还发现,在慢模式下,相对论效应会强烈降低孤子振幅,而在快模式下,相对论效应会导致压缩-稀薄孤子跃迁,反之亦然,这取决于两种模式下尘埃电荷密度的大小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信