Engineering Microbiology最新文献

筛选
英文 中文
Synergistic antifungal mechanism of effective components from essential oil against Penicillium roqueforti 精油有效成分对罗克福青霉菌的协同抗真菌机制
Engineering Microbiology Pub Date : 2023-03-01 DOI: 10.1016/j.engmic.2022.100057
Fangyuan Zhao , Qianyu Li , Hao Wu , Jinglin Huang , Jian Ju
{"title":"Synergistic antifungal mechanism of effective components from essential oil against Penicillium roqueforti","authors":"Fangyuan Zhao ,&nbsp;Qianyu Li ,&nbsp;Hao Wu ,&nbsp;Jinglin Huang ,&nbsp;Jian Ju","doi":"10.1016/j.engmic.2022.100057","DOIUrl":"https://doi.org/10.1016/j.engmic.2022.100057","url":null,"abstract":"<div><p>Essential oil (EO) has significant antifungal activity. However, there is limited information on the mechanism of the synergistic antifungal effect of the effective components of EO against fungi. In the present study, molecular electrostatic potential and molecular docking were used for the first time to investigate the synergistic antifungal mechanism of eugenol and citral small molecule (C<sub>EC</sub>) against <em>Penicillium roqueforti</em>. The results showed that the C<sub>EC</sub> treatment made the activity of β-(1,3)-glucan synthase (GS) and chitin synthase (CS) decreas by 20.2% and 11.1%, respectively, and the contents of which decreased by 85.0% and 27.9%, respectively compared with the control group. Molecular docking revealed that C<sub>EC</sub> small molecules could bind to GS and CS through different amino acid residues, inhibiting their activity and synthesis. The C<sub>EC</sub> can combine with tryptophan, tyrosine, and phenylalanine in the cell membrane, causing damage to the cell membrane. The binding sites between small molecules and amino acids were mainly around the OH group. In addition, C<sub>EC</sub> affected the energy metabolism system and inhibited the glycolysis pathway<em>.</em> Simultaneously, C<sub>EC</sub> treatment reduced the ergosterol content in the cell membrane by 58.2% compared with the control group. Finally, changes in β-galactosidase, metal ion leakage, and relative conductivity confirmed the destruction of the cell membrane, which resulted in the leakage of cell contents. The above results showed that C<sub>EC</sub> can kill <em>P. roqueforti</em> by inhibiting energy metabolism and destroying the integrity of the cell membrane.</p></div>","PeriodicalId":100478,"journal":{"name":"Engineering Microbiology","volume":"3 1","pages":"Article 100057"},"PeriodicalIF":0.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50204328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Recent advances in screening amino acid overproducers 筛选氨基酸过量生产菌的研究进展
Engineering Microbiology Pub Date : 2023-03-01 DOI: 10.1016/j.engmic.2022.100066
Junkai Tuo , Said Nawab , Xiaoyan Ma , Yi-Xin Huo
{"title":"Recent advances in screening amino acid overproducers","authors":"Junkai Tuo ,&nbsp;Said Nawab ,&nbsp;Xiaoyan Ma ,&nbsp;Yi-Xin Huo","doi":"10.1016/j.engmic.2022.100066","DOIUrl":"https://doi.org/10.1016/j.engmic.2022.100066","url":null,"abstract":"<div><p>Microbial fermentation has contributed to 80% of global amino acid production. The key to microbial fermentation is to obtain fermentation strains with high performance to produce target amino acids with a high yield. These strains are primarily derived from screening enormous mutant libraries. Therefore, a high-throughput, rapid, accurate, and universal screening strategy for amino acid overproducers has become a guarantee for obtaining optional amino acid overproducers. In recent years, the rapid development of various novel screening strategies has been witnessed. However, proper analysis and discussion of these innovative technologies are lacking. Here we systematically reviewed recent advances in screening strategies: the auxotrophic-based strategy, the biosensor-based strategy, and the latest translation-based screening strategy. The design principle, application scope, working efficiency, screening accuracy, and universality of these strategies were discussed in detail. The potential for screening nonstandard amino acid overproducers was also analyzed. Guidance for the improvement of future screening strategies is provided in this review, which could expedite the reconstruction of amino acid overproducers and help promote the fermentation industry to reduce cost, increase yield, and improve quality.</p></div>","PeriodicalId":100478,"journal":{"name":"Engineering Microbiology","volume":"3 1","pages":"Article 100066"},"PeriodicalIF":0.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50203890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Natural and engineered cyclodipeptides: Biosynthesis, chemical diversity, and engineering strategies for diversification and high-yield bioproduction. 天然和工程环二肽:生物合成、化学多样性和多样化和高产生物生产的工程策略。
Engineering Microbiology Pub Date : 2023-03-01 DOI: 10.1016/j.engmic.2022.100067
Wahyu Setia Widodo , Sonja Billerbeck
{"title":"Natural and engineered cyclodipeptides: Biosynthesis, chemical diversity, and engineering strategies for diversification and high-yield bioproduction.","authors":"Wahyu Setia Widodo ,&nbsp;Sonja Billerbeck","doi":"10.1016/j.engmic.2022.100067","DOIUrl":"https://doi.org/10.1016/j.engmic.2022.100067","url":null,"abstract":"<div><p>Cyclodipeptides are diverse chemical scaffolds that show a broad range of bioactivities relevant for medicine, agriculture, chemical catalysis, and material sciences. Cyclodipeptides can be synthesized enzymatically through two unrelated enzyme families, non-ribosomal peptide synthetases (NRPS) and cyclodipeptide synthases (CDPSs). The chemical diversity of cyclodipeptides is derived from the two amino acid <strong>side</strong> chains and the modification of those side-chains by cyclodipeptide tailoring enzymes. While a large spectrum of chemical diversity is already known today, additional chemical space - and as such potential new bioactivities - could be accessed by exploring yet undiscovered NRPS and CDPS gene clusters as well as via engineering. Further, to exploit cyclodipeptides for applications, the low yield of natural biosynthesis needs to be overcome. In this review we summarize current knowledge on NRPS and CDPS-based cyclodipeptide biosynthesis, engineering approaches to further diversity the natural chemical diversity as well as strategies for high-yield production of cyclodipeptides, including a discussion of how advancements in synthetic biology and metabolic engineering can accelerate the translational potential of cyclodipeptides.</p></div>","PeriodicalId":100478,"journal":{"name":"Engineering Microbiology","volume":"3 1","pages":"Article 100067"},"PeriodicalIF":0.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50203891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Challenges and opportunities for third-generation ethanol production: A critical review 第三代乙醇生产面临的挑战和机遇:综述
Engineering Microbiology Pub Date : 2023-03-01 DOI: 10.1016/j.engmic.2022.100056
Caroline Müller , Thamarys Scapini , Alan Rempel , Ederson Rossi Abaide , Aline Frumi Camargo , Mateus Torres Nazari , Viviani Tadioto , Charline Bonatto , Marcus Vinícius Tres , Giovani Leone Zabot , Luciane Maria Colla , Helen Treichel , Sérgio Luiz Alves Jr.
{"title":"Challenges and opportunities for third-generation ethanol production: A critical review","authors":"Caroline Müller ,&nbsp;Thamarys Scapini ,&nbsp;Alan Rempel ,&nbsp;Ederson Rossi Abaide ,&nbsp;Aline Frumi Camargo ,&nbsp;Mateus Torres Nazari ,&nbsp;Viviani Tadioto ,&nbsp;Charline Bonatto ,&nbsp;Marcus Vinícius Tres ,&nbsp;Giovani Leone Zabot ,&nbsp;Luciane Maria Colla ,&nbsp;Helen Treichel ,&nbsp;Sérgio Luiz Alves Jr.","doi":"10.1016/j.engmic.2022.100056","DOIUrl":"https://doi.org/10.1016/j.engmic.2022.100056","url":null,"abstract":"<div><p>In recent decades, third-generation (3G) biofuels have become a more attractive method of fuel production, as algae cultivation does not infringe on resources needed for food production. Additionally, algae can adapt to different environments, has high photosynthetic efficiency (CO<sub>2</sub> fixation), and has a high potential for carbohydrate accumulation. The prevalence of algae worldwide demonstrates its ability to adapt to different environments and climates, proving its biodiversity and versatility. Algae can be grown in wastewater, seawater, and even sewage, thus ensuring a lower water footprint and greater energy efficiency during algal biomass production. Because of this, the optimization of 3G ethanol production appears to be an excellent alternative to mitigate environmental impacts and increase energy and food security. This critical review presents (i) the stages of cultivation and processing of micro and macroalgae; (ii) the selection of yeasts (through engineering and/or bioprospecting) to produce ethanol from these biomasses; (iii) the potential of seawater-based facilities to reduce water footprint; and (iv) the mass and energy balances of 3G ethanol production in the world energy matrix. This article is, above all, a brainstorm on the environmental viability of algae bioethanol.</p></div>","PeriodicalId":100478,"journal":{"name":"Engineering Microbiology","volume":"3 1","pages":"Article 100056"},"PeriodicalIF":0.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50203895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Distinct dynamic phases observed in bacterial microcosms 在细菌微宇宙中观察到不同的动力学阶段
Engineering Microbiology Pub Date : 2023-03-01 DOI: 10.1016/j.engmic.2022.100063
Andrea Aparicio , Yang-Yu Liu
{"title":"Distinct dynamic phases observed in bacterial microcosms","authors":"Andrea Aparicio ,&nbsp;Yang-Yu Liu","doi":"10.1016/j.engmic.2022.100063","DOIUrl":"https://doi.org/10.1016/j.engmic.2022.100063","url":null,"abstract":"<div><p>Predicting biodiversity and dynamics of complex communities is a fundamental challenge in ecology. Leveraging bacterial microcosms with well-controlled laboratory conditions, Hu et al. recently performed a direct test of theory predicting that two community-level parameters (i.e., species pool size and inter-species interaction strength) dictate transitions between three dynamical phases: stable full coexistence, stable partial coexistence, and persistent fluctuations. Generally, communities experience species extinctions before they lose stability as either of the two parameters increases.</p></div>","PeriodicalId":100478,"journal":{"name":"Engineering Microbiology","volume":"3 1","pages":"Article 100063"},"PeriodicalIF":0.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50203909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Sustainable biosynthesis of valuable diterpenes in microbes 微生物中有价值二萜的可持续生物合成
Engineering Microbiology Pub Date : 2023-03-01 DOI: 10.1016/j.engmic.2022.100058
Yanbin Liu, Xixian Chen, Congqiang Zhang
{"title":"Sustainable biosynthesis of valuable diterpenes in microbes","authors":"Yanbin Liu,&nbsp;Xixian Chen,&nbsp;Congqiang Zhang","doi":"10.1016/j.engmic.2022.100058","DOIUrl":"https://doi.org/10.1016/j.engmic.2022.100058","url":null,"abstract":"<div><p>Diterpenes, or diterpenoids, are the most abundant and diverse subgroup of terpenoids, the largest family of secondary metabolites. Most diterpenes possess broad biological activities including anti-inflammatory, antiviral, anti-tumoral, antimicrobial, anticancer, antifungal, antidiabetic, cardiovascular protective, and phytohormone activities. As such, diterpenes have wide applications in medicine (e.g., the anticancer drug Taxol and the antibiotic pleuromutilin), agriculture (especially as phytohormones such as gibberellins), personal care (e.g., the fragrance sclareol) and food (e.g., steviol glucosides as low-calorie sweeteners) industries. Diterpenes are biosynthesized in a common route with various diterpene synthases and decoration enzymes like cytochrome P450 oxidases, glycosidases, and acyltransferases. Recent advances in DNA sequencing and synthesis, omics analysis, synthetic biology, and metabolic engineering have enabled efficient production of diterpenes in several chassis hosts like <em>Escherichia coli, Saccharomyces cerevisiae, Yarrowia lipolytica, Rhodosporidium toruloides</em>, and <em>Fusarium fujikuroi</em>. This review summarizes the recently discovered diterpenes, their related enzymes and biosynthetic pathways, particularly highlighting the microbial synthesis of high-value diterpenes directly from inexpensive carbon sources (e.g., sugars). The high titers (&gt;4 g/L) achieved mean that some of these endeavors are reaching or close to commercialization. As such, we envisage a bright future in translating microbial synthesis of diterpenes into commercialization.</p></div>","PeriodicalId":100478,"journal":{"name":"Engineering Microbiology","volume":"3 1","pages":"Article 100058"},"PeriodicalIF":0.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50203889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Methods of DNA introduction for the engineering of commensal microbes 共生微生物工程中的DNA导入方法
Engineering Microbiology Pub Date : 2022-12-01 DOI: 10.1016/j.engmic.2022.100048
Dake Liu , Nicole E. Siguenza , Amir Zarrinpar , Yousong Ding
{"title":"Methods of DNA introduction for the engineering of commensal microbes","authors":"Dake Liu ,&nbsp;Nicole E. Siguenza ,&nbsp;Amir Zarrinpar ,&nbsp;Yousong Ding","doi":"10.1016/j.engmic.2022.100048","DOIUrl":"https://doi.org/10.1016/j.engmic.2022.100048","url":null,"abstract":"<div><p>The microbiome is an essential component of ecological systems and is comprised of a diverse array of microbes. Over the past decades, the accumulated observational evidence reveals a close correlation between the microbiome and human health and disease. Many groups are now manipulating individual microbial strains, species and the community as a whole to gain a mechanistic understanding of the functions of the microbiome. Here, we discuss three major approaches for introducing DNA to engineer model bacteria and isolated undomesticated bacteria, including transformation, transduction, and conjugation. We provide an overview of these approaches and describe the advantages and limitations of each method. In addition, we highlight examples of human microbiome engineering using these approaches. Finally, we provide perspectives for the future of microbiome engineering.</p></div>","PeriodicalId":100478,"journal":{"name":"Engineering Microbiology","volume":"2 4","pages":"Article 100048"},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266737032200039X/pdfft?md5=f5d40185412cfd538771a14f375eb9d0&pid=1-s2.0-S266737032200039X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71894961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Metabolic engineering using acetate as a promising building block for the production of bio‐based chemicals 利用乙酸盐作为生产生物基化学品的有前景的构建块的代谢工程
Engineering Microbiology Pub Date : 2022-12-01 DOI: 10.1016/j.engmic.2022.100036
Guiping Gong , Bo Wu , Linpei Liu, Jianting Li, Qili Zhu, Mingxiong He, Guoquan Hu
{"title":"Metabolic engineering using acetate as a promising building block for the production of bio‐based chemicals","authors":"Guiping Gong ,&nbsp;Bo Wu ,&nbsp;Linpei Liu,&nbsp;Jianting Li,&nbsp;Qili Zhu,&nbsp;Mingxiong He,&nbsp;Guoquan Hu","doi":"10.1016/j.engmic.2022.100036","DOIUrl":"https://doi.org/10.1016/j.engmic.2022.100036","url":null,"abstract":"<div><p>The production of biofuels and biochemicals derived from microbial fermentation has received a lot of attention and interest in light of concerns about the depletion of fossil fuel resources and climatic degeneration. However, the economic viability of feedstocks for biological conversion remains a barrier, urging researchers to develop renewable and sustainable low-cost carbon sources for future bioindustries. Owing to the numerous advantages, acetate has been regarded as a promising feedstock targeting the production of acetyl-CoA-derived chemicals. This review aims to highlight the potential of acetate as a building block in industrial biotechnology for the production of bio-based chemicals with metabolic engineering. Different alternative approaches and routes comprised of lignocellulosic biomass, waste streams, and C1 gas for acetate generation are briefly described and evaluated. Then, a thorough explanation of the metabolic pathway for biotechnological acetate conversion, cellular transport, and toxin tolerance is described. Particularly, current developments in metabolic engineering of the manufacture of biochemicals from acetate are summarized in detail, with various microbial cell factories and strategies proposed to improve acetate assimilation and enhance product formation. Challenges and future development for acetate generation and assimilation as well as chemicals production from acetate is eventually shown. This review provides an overview of the current status of acetate utilization and proves the great potential of acetate with metabolic engineering in industrial biotechnology.</p></div>","PeriodicalId":100478,"journal":{"name":"Engineering Microbiology","volume":"2 4","pages":"Article 100036"},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667370322000273/pdfft?md5=088f7fc51c1719804dc0bdd1323b2ec2&pid=1-s2.0-S2667370322000273-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71894964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 14
Lysine acetylation decreases enzyme activity and protein level of Escherichia coli lactate dehydrogenase 赖氨酸乙酰化降低大肠杆菌乳酸脱氢酶的酶活性和蛋白质水平
Engineering Microbiology Pub Date : 2022-12-01 DOI: 10.1016/j.engmic.2022.100045
Min Liu , Meitong Huo , Likun Guo , Yingxin Fu , Mo Xian , Qingsheng Qi , Wei Liu , Guang Zhao
{"title":"Lysine acetylation decreases enzyme activity and protein level of Escherichia coli lactate dehydrogenase","authors":"Min Liu ,&nbsp;Meitong Huo ,&nbsp;Likun Guo ,&nbsp;Yingxin Fu ,&nbsp;Mo Xian ,&nbsp;Qingsheng Qi ,&nbsp;Wei Liu ,&nbsp;Guang Zhao","doi":"10.1016/j.engmic.2022.100045","DOIUrl":"https://doi.org/10.1016/j.engmic.2022.100045","url":null,"abstract":"<div><p>Lactate is an important bulk chemical with widespread applications and a major byproduct of other chemicals bioprocess in microbial fermentation. Lactate dehydrogenase A (LdhA) catalyzes the synthesis of lactate from pyruvate. Lysine acetylation is an evolutionarily conserved post-translational modification; however, the mechanisms underlying the regulation of LdhA function by lysine acetylation in <em>Escherichia coli</em> remain poorly understood. Herein, we demonstrate acetylation of <em>E. coli</em> LdhA occurs via enzymatic and non-enzymatic mechanisms. Further, we show carbon source type and concentration affect the lysine acetylation status of LdhA via a non-enzymatic mechanism. Lysine acetylation significantly inhibits the enzymatic activity and protein level of LdhA. The results of the present study demonstrate lysine acetylation of <em>E. coli</em> LdhA is irreversible. Understanding of the effects of lysine acetylation on LdhA function may provide a new perspective for regulating lactate production in microbial synthesis.</p></div>","PeriodicalId":100478,"journal":{"name":"Engineering Microbiology","volume":"2 4","pages":"Article 100045"},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667370322000364/pdfft?md5=c8b18f6fe6bad875cc8ba439238b6b55&pid=1-s2.0-S2667370322000364-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71894963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bioproduction of monoterpene indole alkaloids in a single cell factory 单细胞工厂中单萜吲哚生物碱的生物生产
Engineering Microbiology Pub Date : 2022-12-01 DOI: 10.1016/j.engmic.2022.100050
Jianping Huang , Shengxiong Huang
{"title":"Bioproduction of monoterpene indole alkaloids in a single cell factory","authors":"Jianping Huang ,&nbsp;Shengxiong Huang","doi":"10.1016/j.engmic.2022.100050","DOIUrl":"https://doi.org/10.1016/j.engmic.2022.100050","url":null,"abstract":"<div><p>The <em>de novo</em> biosynthesis of vindoline and catharanthine, the direct precursors used for industrial production of the anti-cancer drug vinblastine, has been achieved in the yeast cell factory. To date, this is the longest natural product biosynthesis pathway that has been successfully transferred from plants to microorganisms, indicating the possibility of producing more than 3,000 other monoterpene indole alkaloids in yeast by synthetic genome engineering.</p></div>","PeriodicalId":100478,"journal":{"name":"Engineering Microbiology","volume":"2 4","pages":"Article 100050"},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667370322000418/pdfft?md5=09e64fcf451484224d9d9eb3b5c71b20&pid=1-s2.0-S2667370322000418-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71894965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信