Engineering Microbiology最新文献

筛选
英文 中文
Aquaculture sustainability through alternative dietary ingredients: Microalgal value-added products 通过替代膳食成分实现水产养殖的可持续性:微藻增值产品
Engineering Microbiology Pub Date : 2022-12-01 DOI: 10.1016/j.engmic.2022.100049
John N. Idenyi , Jonathan C. Eya , Amechi S. Nwankwegu , Emeka G. Nwoba
{"title":"Aquaculture sustainability through alternative dietary ingredients: Microalgal value-added products","authors":"John N. Idenyi ,&nbsp;Jonathan C. Eya ,&nbsp;Amechi S. Nwankwegu ,&nbsp;Emeka G. Nwoba","doi":"10.1016/j.engmic.2022.100049","DOIUrl":"https://doi.org/10.1016/j.engmic.2022.100049","url":null,"abstract":"<div><p>Aquaculture contributes remarkably to the global economy and food security through seafood production, an important part of the global food supply chain. The success of this industry depends heavily on aquafeeds, and the nutritional composition of the feed is an important factor for the quality, productivity, and profitability of aquaculture species. The sustainability of the aquaculture industry depends on the accessibility of quality feed ingredients, such as fishmeal and fish oil. These traditional feedstuffs are under increasing significant pressure due to the rapid expansion of aquaculture for human consumption and the decline of natural fish harvest. In this review, we evaluated the development of microalgal molecules in aquaculture and expanded the use of these high-value compounds in the production of aquaculture diets. Microalgae-derived functional ingredients emerged as one of the promising alternatives for aquafeed production with positive health benefits. Several compounds found in microalgae, including carotenoids (lutein, astaxanthin, and β-carotene), essential amino acids (leucine, valine, and threonine), β-1–3-glucan, essential oils (docosahexaenoic acid and eicosapentaenoic acid), minerals, and vitamins, are of high nutritional value to aquaculture.</p></div>","PeriodicalId":100478,"journal":{"name":"Engineering Microbiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667370322000406/pdfft?md5=06265d972f4fa1627cbf4a7604ac81c7&pid=1-s2.0-S2667370322000406-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71894967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Bioproduction of monoterpene indole alkaloids in a single cell factory 单细胞工厂中单萜吲哚生物碱的生物生产
Engineering Microbiology Pub Date : 2022-10-01 DOI: 10.1016/j.engmic.2022.100050
Jian-Ping Huang, Sheng-Xiong Huang
{"title":"Bioproduction of monoterpene indole alkaloids in a single cell factory","authors":"Jian-Ping Huang, Sheng-Xiong Huang","doi":"10.1016/j.engmic.2022.100050","DOIUrl":"https://doi.org/10.1016/j.engmic.2022.100050","url":null,"abstract":"","PeriodicalId":100478,"journal":{"name":"Engineering Microbiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91421065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
The type IX secretion system: Insights into its function and connection to glycosylation in Cytophaga hutchinsonii IX型分泌系统在胡氏细胞吞噬中的作用及其与糖基化的关系
Engineering Microbiology Pub Date : 2022-09-01 DOI: 10.1016/j.engmic.2022.100038
Wenxia Song, Xueke Zhuang, Yahong Tan, Qingsheng Qi, Xuemei Lu
{"title":"The type IX secretion system: Insights into its function and connection to glycosylation in Cytophaga hutchinsonii","authors":"Wenxia Song,&nbsp;Xueke Zhuang,&nbsp;Yahong Tan,&nbsp;Qingsheng Qi,&nbsp;Xuemei Lu","doi":"10.1016/j.engmic.2022.100038","DOIUrl":"https://doi.org/10.1016/j.engmic.2022.100038","url":null,"abstract":"<div><p>The recently discovered type IX secretion system (T9SS) is limited to the Bacteroidetes phylum. <em>Cytophaga hutchinsonii</em>, a member of the Bacteroidetes phylum widely spread in soil, has complete orthologs of T9SS components and many T9SS substrates. <em>C. hutchinsonii</em> can efficiently degrade crystalline cellulose using a novel strategy, in which bacterial cells must be in direct contact with cellulose. It can rapidly glide over surfaces via unclear mechanisms. Studies have shown that T9SS plays an important role in cellulose degradation, gliding motility, and ion assimilation in <em>C. hutchinsonii</em>. As reported recently, T9SS substrates are <em>N</em>- or <em>O</em>-glycosylated at their C-terminal domains (CTDs), with <em>N</em>-glycosylation being related to the translocation and outer membrane anchoring of these proteins. These findings have deepened our understanding of T9SS in <em>C. hutchinsonii</em>. In this review, we focused on the research progress on diverse substrates and functions of T9SS in <em>C. hutchinsonii</em> and the glycosylation of its substrates. A model of T9SS functions and the glycosylation of its substrates was proposed.</p></div>","PeriodicalId":100478,"journal":{"name":"Engineering Microbiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667370322000297/pdfft?md5=434ec9b499cefc5eb233b60b01f5e3ca&pid=1-s2.0-S2667370322000297-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71901146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Methods of DNA Introduction for the Engineering of Commensal Microbes 共生微生物工程中DNA导入方法的研究
Engineering Microbiology Pub Date : 2022-09-01 DOI: 10.1016/j.engmic.2022.100048
Dake Liu, Nicole Siguenza, A. Zarrinpar, Yousong Ding
{"title":"Methods of DNA Introduction for the Engineering of Commensal Microbes","authors":"Dake Liu, Nicole Siguenza, A. Zarrinpar, Yousong Ding","doi":"10.1016/j.engmic.2022.100048","DOIUrl":"https://doi.org/10.1016/j.engmic.2022.100048","url":null,"abstract":"","PeriodicalId":100478,"journal":{"name":"Engineering Microbiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89698005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Aquaculture sustainability through alternative dietary ingredients: Microalgal value-added products 通过替代膳食成分实现水产养殖的可持续性:微藻增值产品
Engineering Microbiology Pub Date : 2022-09-01 DOI: 10.1016/j.engmic.2022.100049
J. N. Idenyi, J. Eya, A. S. Nwankwegu, E. Nwoba
{"title":"Aquaculture sustainability through alternative dietary ingredients: Microalgal value-added products","authors":"J. N. Idenyi, J. Eya, A. S. Nwankwegu, E. Nwoba","doi":"10.1016/j.engmic.2022.100049","DOIUrl":"https://doi.org/10.1016/j.engmic.2022.100049","url":null,"abstract":"","PeriodicalId":100478,"journal":{"name":"Engineering Microbiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77100512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Discovery and analysis of a new class of triterpenes derived from hexaprenyl pyrophosphate 一类新的焦磷酸己烯基三萜的发现与分析
Engineering Microbiology Pub Date : 2022-09-01 DOI: 10.1016/j.engmic.2022.100035
Dan Hu
{"title":"Discovery and analysis of a new class of triterpenes derived from hexaprenyl pyrophosphate","authors":"Dan Hu","doi":"10.1016/j.engmic.2022.100035","DOIUrl":"https://doi.org/10.1016/j.engmic.2022.100035","url":null,"abstract":"<div><p>Triterpenes are derived from squalene or oxidosqualene. However, a new class of triterpenes derived from hexaprenyl pyrophosphate has been recently discovered, formed by a new family of chimeric class I triterpene synthases. The cyclization mechanisms of triterpenes were elucidated by isotopic labeling and protein structural analyses, which helps understand the biosynthesis of triterpenes in nature.</p></div>","PeriodicalId":100478,"journal":{"name":"Engineering Microbiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667370322000261/pdfft?md5=c826781e7a1fc24a2cab8717beaca2ee&pid=1-s2.0-S2667370322000261-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71900307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Peptaibols: Diversity, bioactivity, and biosynthesis 肽:多样性、生物活性和生物合成
Engineering Microbiology Pub Date : 2022-09-01 DOI: 10.1016/j.engmic.2022.100026
Xuewen Hou , Ruonan Sun , Yanyan Feng , Runfang Zhang , Tianjiao Zhu , Qian Che , Guojian Zhang , Dehai Li
{"title":"Peptaibols: Diversity, bioactivity, and biosynthesis","authors":"Xuewen Hou ,&nbsp;Ruonan Sun ,&nbsp;Yanyan Feng ,&nbsp;Runfang Zhang ,&nbsp;Tianjiao Zhu ,&nbsp;Qian Che ,&nbsp;Guojian Zhang ,&nbsp;Dehai Li","doi":"10.1016/j.engmic.2022.100026","DOIUrl":"https://doi.org/10.1016/j.engmic.2022.100026","url":null,"abstract":"<div><p>Peptaibols are a large family of linear, amphipathic polypeptides consisting of 5-20 amino acid residues generated from the fungal nonribosomal peptide synthetase (NRPS) pathway. With a relatively high content of non-proteinogenic amino acids such as <em>α</em>-aminoisobutyrate (Aib) and isovaline (Iva) in the skeleton, peptaibols exhibit a wide range of biological activities, including anti-microbial, cytotoxic, and neuroleptic effects. With five peptaibols brought to market for use as biocontrol agents, this class of peptides has received increasing attention from both biochemists and pharmacologists. In this review, we summarized the progress made in structural characterization, elucidation of biosynthetic pathways, and investigation of biosynthesis elucidation and bioactivities, to promote further efforts to develop peptaibols as pharmaceuticals.</p></div>","PeriodicalId":100478,"journal":{"name":"Engineering Microbiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667370322000170/pdfft?md5=6089e83b083385bbf9baf891b2a9e28e&pid=1-s2.0-S2667370322000170-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71901150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Engineered bacteria as drug delivery vehicles: Principles and prospects 工程细菌作为药物传递载体:原理与展望
Engineering Microbiology Pub Date : 2022-09-01 DOI: 10.1016/j.engmic.2022.100034
Yuxi Zhou , Yong Han
{"title":"Engineered bacteria as drug delivery vehicles: Principles and prospects","authors":"Yuxi Zhou ,&nbsp;Yong Han","doi":"10.1016/j.engmic.2022.100034","DOIUrl":"https://doi.org/10.1016/j.engmic.2022.100034","url":null,"abstract":"<div><p>The development of drug delivery vehicles is in significant demand in the context of precision medicine. With the development of synthetic biology, the use of genetically engineered bacteria as drug delivery vectors has attracted more and more attention. Herein, we reviewed the research advances in bioengineered bacteria as drug carriers, with emphasis on the synthetic biology strategies for modifying these bacteria, including the targeted realization method of engineered bacteria, the designing scheme of genetic circuits, and the release pathways of therapeutic compounds. Based on this, the essential components, design principles, and health concerns of engineering bacteria as drug carriers and the development prospects in this field have been discussed.</p></div>","PeriodicalId":100478,"journal":{"name":"Engineering Microbiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266737032200025X/pdfft?md5=58d1b5d92b12422cf0b958e12b94510f&pid=1-s2.0-S266737032200025X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71901149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
Recent Developments in the Identification and Biosynthesis of Antitumor Drugs Derived from Microorganisms 微生物源抗肿瘤药物的鉴定与生物合成研究进展
Engineering Microbiology Pub Date : 2022-09-01 DOI: 10.1016/j.engmic.2022.100047
Qi Gao, S. Deng, Tianyu Jiang
{"title":"Recent Developments in the Identification and Biosynthesis of Antitumor Drugs Derived from Microorganisms","authors":"Qi Gao, S. Deng, Tianyu Jiang","doi":"10.1016/j.engmic.2022.100047","DOIUrl":"https://doi.org/10.1016/j.engmic.2022.100047","url":null,"abstract":"","PeriodicalId":100478,"journal":{"name":"Engineering Microbiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81738074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Copper-radical oxidases: A diverse group of biocatalysts with distinct properties and a broad range of biotechnological applications 铜自由基氧化酶:一组不同的生物催化剂具有不同的性质和广泛的生物技术应用
Engineering Microbiology Pub Date : 2022-09-01 DOI: 10.1016/j.engmic.2022.100037
Katja Koschorreck , Saadet Alpdagtas , Vlada B. Urlacher
{"title":"Copper-radical oxidases: A diverse group of biocatalysts with distinct properties and a broad range of biotechnological applications","authors":"Katja Koschorreck ,&nbsp;Saadet Alpdagtas ,&nbsp;Vlada B. Urlacher","doi":"10.1016/j.engmic.2022.100037","DOIUrl":"https://doi.org/10.1016/j.engmic.2022.100037","url":null,"abstract":"<div><p>Copper-radical oxidases (CROs) catalyze the two-electron oxidation of a large number of primary alcohols including carbohydrates, polyols and benzylic alcohols as well as aldehydes and α-hydroxy-carbonyl compounds while reducing molecular oxygen to hydrogen peroxide. Initially, CROs like galactose oxidase and glyoxal oxidase were identified only in fungal secretomes. Since the last decade, their representatives have also been identified in some bacteria. CROs are grouped in the AA5 family of “auxiliary activities” in the database of Carbohydrate-Active enzymes. Despite low overall sequence similarity and different substrate specificities, sequence alignments and the solved crystal structures revealed a conserved architecture of the active sites in all CROs, with a mononuclear copper ion coordinated to an axial tyrosine, two histidines, and a cross-linked cysteine-tyrosyl radical cofactor. This unique post-translationally modified protein cofactor has attracted much attention in the past, which resulted in a large number of reports that shed light on key steps of the catalytic cycle and physico-chemical properties of CROs. Thanks to their broad substrate spectrum accompanied by the only need for molecular oxygen for catalysis, CROs since recently experience a renaissance and have been applied in various biocatalytic processes. This review provides an overview of the structural features, catalytic mechanism and substrates of CROs, presents an update on the engineering of these enzymes to improve their expression in recombinant hosts and to enhance their activity, and describes their potential fields of biotechnological application.</p></div>","PeriodicalId":100478,"journal":{"name":"Engineering Microbiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667370322000285/pdfft?md5=2ab20458bb384f206e67380c0ffa3852&pid=1-s2.0-S2667370322000285-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71901148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信