Chem & Bio Engineering最新文献

筛选
英文 中文
Light-Controlled Adhesive Hydrogels for On-Demand Adhesion. 用于按需粘合的光控粘合剂水凝胶。
Chem & Bio Engineering Pub Date : 2025-03-26 eCollection Date: 2025-04-24 DOI: 10.1021/cbe.4c00177
Song Yang, Chenxi Qin, Zhizhi Zhang, Ming Zhang, Bin Li, Yanfei Ma, Feng Zhou, Weimin Liu
{"title":"Light-Controlled Adhesive Hydrogels for On-Demand Adhesion.","authors":"Song Yang, Chenxi Qin, Zhizhi Zhang, Ming Zhang, Bin Li, Yanfei Ma, Feng Zhou, Weimin Liu","doi":"10.1021/cbe.4c00177","DOIUrl":"https://doi.org/10.1021/cbe.4c00177","url":null,"abstract":"<p><p>The rapid and reversible adhesion between solids is of great significance, particularly in fields such as biomedicine, intelligent machines, and bioelectronic sensors. Hydrogels, as soft materials, play a vital role in reversible adhesion. To achieve a wider range of applications, it is essential to enhance the intelligence of hydrogels. However, the preparation of reversible adhesive hydrogels with remote control, reversible adhesion, rapid response, and no residue remains a challenge in the field. Herein, we developed a light-controlled reversible adhesive hydrogel by integrating temperature-controlled reversible adhesion with the photothermal response capabilities of Fe<sub>3</sub>O<sub>4</sub>. The hydrogel can adhere/desorb reversibly under temperature control and allows for remote adhesion control using infrared light. Under infrared light irradiation, surface water causes carboxylic acid groups to migrate to the surface, thereby shielding the catechol groups. This results in insufficient adhesive groups at the interface to form interactions with opposing surfaces. Without infrared light irradiation, the adhesive functional groups are exposed, allowing interaction forces to form between the surface with the adhesion groups and the opposing surfaces. This smart hydrogel holds significant potential for future applications in wound dressings, wearable devices, and soft robots.</p>","PeriodicalId":100230,"journal":{"name":"Chem & Bio Engineering","volume":"2 4","pages":"253-259"},"PeriodicalIF":0.0,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12035562/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144061263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Light-Controlled Adhesive Hydrogels for On-Demand Adhesion 用于按需粘合的光控粘合剂水凝胶
Chem & Bio Engineering Pub Date : 2025-03-26 DOI: 10.1021/cbe.4c0017710.1021/cbe.4c00177
Song Yang, Chenxi Qin, Zhizhi Zhang, Ming Zhang, Bin Li*, Yanfei Ma*, Feng Zhou* and Weimin Liu, 
{"title":"Light-Controlled Adhesive Hydrogels for On-Demand Adhesion","authors":"Song Yang,&nbsp;Chenxi Qin,&nbsp;Zhizhi Zhang,&nbsp;Ming Zhang,&nbsp;Bin Li*,&nbsp;Yanfei Ma*,&nbsp;Feng Zhou* and Weimin Liu,&nbsp;","doi":"10.1021/cbe.4c0017710.1021/cbe.4c00177","DOIUrl":"https://doi.org/10.1021/cbe.4c00177https://doi.org/10.1021/cbe.4c00177","url":null,"abstract":"<p >The rapid and reversible adhesion between solids is of great significance, particularly in fields such as biomedicine, intelligent machines, and bioelectronic sensors. Hydrogels, as soft materials, play a vital role in reversible adhesion. To achieve a wider range of applications, it is essential to enhance the intelligence of hydrogels. However, the preparation of reversible adhesive hydrogels with remote control, reversible adhesion, rapid response, and no residue remains a challenge in the field. Herein, we developed a light-controlled reversible adhesive hydrogel by integrating temperature-controlled reversible adhesion with the photothermal response capabilities of Fe<sub>3</sub>O<sub>4</sub>. The hydrogel can adhere/desorb reversibly under temperature control and allows for remote adhesion control using infrared light. Under infrared light irradiation, surface water causes carboxylic acid groups to migrate to the surface, thereby shielding the catechol groups. This results in insufficient adhesive groups at the interface to form interactions with opposing surfaces. Without infrared light irradiation, the adhesive functional groups are exposed, allowing interaction forces to form between the surface with the adhesion groups and the opposing surfaces. This smart hydrogel holds significant potential for future applications in wound dressings, wearable devices, and soft robots.</p>","PeriodicalId":100230,"journal":{"name":"Chem & Bio Engineering","volume":"2 4","pages":"253–259 253–259"},"PeriodicalIF":0.0,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/cbe.4c00177","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143863102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Crystallization-Assisted Asymmetric Synthesis of Enantiopure Amines Using Membrane-Immobilized Transaminase. 膜固定化转氨酶结晶辅助不对称合成对映纯胺。
Chem & Bio Engineering Pub Date : 2025-03-18 eCollection Date: 2025-04-24 DOI: 10.1021/cbe.4c00186
Hippolyte Meersseman Arango, Neal Bachus, Xuan Dieu Linh Nguyen, Basile Bredun, Patricia Luis, Tom Leyssens, David Roura Padrosa, Francesca Paradisi, Damien P Debecker
{"title":"Crystallization-Assisted Asymmetric Synthesis of Enantiopure Amines Using Membrane-Immobilized Transaminase.","authors":"Hippolyte Meersseman Arango, Neal Bachus, Xuan Dieu Linh Nguyen, Basile Bredun, Patricia Luis, Tom Leyssens, David Roura Padrosa, Francesca Paradisi, Damien P Debecker","doi":"10.1021/cbe.4c00186","DOIUrl":"https://doi.org/10.1021/cbe.4c00186","url":null,"abstract":"<p><p>The production of active pharmaceutical ingredients (APIs) requires enantiopure chiral amines, for which greener synthesis processes are needed. Transaminases (TAs) are enzymes that catalyze the enantioselective production of chiral amines from prochiral ketones through transamination under mild conditions. Yet, industrial applications of biocatalytic transamination remain currently hindered by the limited stability of soluble enzymes and by the unfavorable thermodynamic equilibrium of targeted asymmetric reactions. Enzyme immobilization can be applied to address stability, recoverability, and reusability issues. In the perspective of process intensification, we chose to immobilize TAs on polymeric (polypropylene) membranes. In the asymmetric synthesis of (R)-2-fluoro-α-methylbenzylamine ((R)-FMBA), such membrane-immobilized TAs exhibited superior specific activity and stability compared with soluble TAs; they also outperformed TAs immobilized on resins. The reaction yield remained, however, limited by thermodynamics. To further enhance the synthesis yield, the reaction was coupled with the <i>in situ</i> crystallization of (R)-FMBA with 3,3-diphenylpropionic acid (DPPA). By doing so, the theoretical equilibrium conversion was pushed from ∼44% to ∼83%. In fact, a 72% overall recovery yield of crystallized (R)-FMBA was demonstrated. The enantioselectivity of the reaction mixture was preserved. Importantly, purification was greatly facilitated since the target enantiopure amine was readily recovered as high-purity (R)-FMBA:DPPA crystals. The biocatalytic membranes were found to be fully reusable, performing successive high-yield asymmetric syntheses with only minor deactivation. Overall, the crystallization-assisted strategy proposed herein offers a greener path for the biocatalytic production of valuable chiral targets.</p>","PeriodicalId":100230,"journal":{"name":"Chem & Bio Engineering","volume":"2 4","pages":"272-282"},"PeriodicalIF":0.0,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12035565/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144016193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Crystallization-Assisted Asymmetric Synthesis of Enantiopure Amines Using Membrane-Immobilized Transaminase 膜固定化转氨酶结晶辅助不对称合成对映纯胺
Chem & Bio Engineering Pub Date : 2025-03-17 DOI: 10.1021/cbe.4c0018610.1021/cbe.4c00186
Hippolyte Meersseman Arango, Neal Bachus, Xuan Dieu Linh Nguyen, Basile Bredun, Patricia Luis, Tom Leyssens, David Roura Padrosa, Francesca Paradisi and Damien P. Debecker*, 
{"title":"Crystallization-Assisted Asymmetric Synthesis of Enantiopure Amines Using Membrane-Immobilized Transaminase","authors":"Hippolyte Meersseman Arango,&nbsp;Neal Bachus,&nbsp;Xuan Dieu Linh Nguyen,&nbsp;Basile Bredun,&nbsp;Patricia Luis,&nbsp;Tom Leyssens,&nbsp;David Roura Padrosa,&nbsp;Francesca Paradisi and Damien P. Debecker*,&nbsp;","doi":"10.1021/cbe.4c0018610.1021/cbe.4c00186","DOIUrl":"https://doi.org/10.1021/cbe.4c00186https://doi.org/10.1021/cbe.4c00186","url":null,"abstract":"<p >The production of active pharmaceutical ingredients (APIs) requires enantiopure chiral amines, for which greener synthesis processes are needed. Transaminases (TAs) are enzymes that catalyze the enantioselective production of chiral amines from prochiral ketones through transamination under mild conditions. Yet, industrial applications of biocatalytic transamination remain currently hindered by the limited stability of soluble enzymes and by the unfavorable thermodynamic equilibrium of targeted asymmetric reactions. Enzyme immobilization can be applied to address stability, recoverability, and reusability issues. In the perspective of process intensification, we chose to immobilize TAs on polymeric (polypropylene) membranes. In the asymmetric synthesis of (R)-2-fluoro-α-methylbenzylamine ((R)-FMBA), such membrane-immobilized TAs exhibited superior specific activity and stability compared with soluble TAs; they also outperformed TAs immobilized on resins. The reaction yield remained, however, limited by thermodynamics. To further enhance the synthesis yield, the reaction was coupled with the <i>in situ</i> crystallization of (R)-FMBA with 3,3-diphenylpropionic acid (DPPA). By doing so, the theoretical equilibrium conversion was pushed from ∼44% to ∼83%. In fact, a 72% overall recovery yield of crystallized (R)-FMBA was demonstrated. The enantioselectivity of the reaction mixture was preserved. Importantly, purification was greatly facilitated since the target enantiopure amine was readily recovered as high-purity (R)-FMBA:DPPA crystals. The biocatalytic membranes were found to be fully reusable, performing successive high-yield asymmetric syntheses with only minor deactivation. Overall, the crystallization-assisted strategy proposed herein offers a greener path for the biocatalytic production of valuable chiral targets.</p>","PeriodicalId":100230,"journal":{"name":"Chem & Bio Engineering","volume":"2 4","pages":"272–282 272–282"},"PeriodicalIF":0.0,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/cbe.4c00186","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143863097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solvent Screening for Separation Processes Using Machine Learning and High-Throughput Technologies 利用机器学习和高通量技术筛选分离过程中的溶剂
Chem & Bio Engineering Pub Date : 2025-03-05 DOI: 10.1021/cbe.4c0017010.1021/cbe.4c00170
Justin P. Edaugal, Difan Zhang*, Dupeng Liu*, Vassiliki-Alexandra Glezakou and Ning Sun*, 
{"title":"Solvent Screening for Separation Processes Using Machine Learning and High-Throughput Technologies","authors":"Justin P. Edaugal,&nbsp;Difan Zhang*,&nbsp;Dupeng Liu*,&nbsp;Vassiliki-Alexandra Glezakou and Ning Sun*,&nbsp;","doi":"10.1021/cbe.4c0017010.1021/cbe.4c00170","DOIUrl":"https://doi.org/10.1021/cbe.4c00170https://doi.org/10.1021/cbe.4c00170","url":null,"abstract":"<p >As the chemical industry shifts toward sustainable practices, there is a growing initiative to replace conventional fossil-derived solvents with environmentally friendly alternatives such as ionic liquids (ILs) and deep eutectic solvents (DESs). Artificial intelligence (AI) plays a key role in the discovery and design of novel solvents and the development of green processes. This review explores the latest advancements in AI-assisted solvent screening with a specific focus on machine learning (ML) models for physicochemical property prediction and separation process design. Additionally, this paper highlights recent progress in the development of automated high-throughput (HT) platforms for solvent screening. Finally, this paper discusses the challenges and prospects of ML-driven HT strategies for green solvent design and optimization. To this end, this review provides key insights to advance solvent screening strategies for future chemical and separation processes.</p>","PeriodicalId":100230,"journal":{"name":"Chem & Bio Engineering","volume":"2 4","pages":"210–228 210–228"},"PeriodicalIF":0.0,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/cbe.4c00170","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143863226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solvent Screening for Separation Processes Using Machine Learning and High-Throughput Technologies. 利用机器学习和高通量技术筛选分离过程中的溶剂。
Chem & Bio Engineering Pub Date : 2025-03-05 eCollection Date: 2025-04-24 DOI: 10.1021/cbe.4c00170
Justin P Edaugal, Difan Zhang, Dupeng Liu, Vassiliki-Alexandra Glezakou, Ning Sun
{"title":"Solvent Screening for Separation Processes Using Machine Learning and High-Throughput Technologies.","authors":"Justin P Edaugal, Difan Zhang, Dupeng Liu, Vassiliki-Alexandra Glezakou, Ning Sun","doi":"10.1021/cbe.4c00170","DOIUrl":"https://doi.org/10.1021/cbe.4c00170","url":null,"abstract":"<p><p>As the chemical industry shifts toward sustainable practices, there is a growing initiative to replace conventional fossil-derived solvents with environmentally friendly alternatives such as ionic liquids (ILs) and deep eutectic solvents (DESs). Artificial intelligence (AI) plays a key role in the discovery and design of novel solvents and the development of green processes. This review explores the latest advancements in AI-assisted solvent screening with a specific focus on machine learning (ML) models for physicochemical property prediction and separation process design. Additionally, this paper highlights recent progress in the development of automated high-throughput (HT) platforms for solvent screening. Finally, this paper discusses the challenges and prospects of ML-driven HT strategies for green solvent design and optimization. To this end, this review provides key insights to advance solvent screening strategies for future chemical and separation processes.</p>","PeriodicalId":100230,"journal":{"name":"Chem & Bio Engineering","volume":"2 4","pages":"210-228"},"PeriodicalIF":0.0,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12035567/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144016561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental Investigation into Dissociation Characteristics of Methane Hydrate in Sediments with Different Contents of Montmorillonite Clay 不同蒙脱土含量沉积物中甲烷水合物解离特性的实验研究
Chem & Bio Engineering Pub Date : 2025-03-03 DOI: 10.1021/cbe.4c0017410.1021/cbe.4c00174
Chang Chen, Yu Zhang, Xiaosen Li*, Yuru Chen and Du Wang, 
{"title":"Experimental Investigation into Dissociation Characteristics of Methane Hydrate in Sediments with Different Contents of Montmorillonite Clay","authors":"Chang Chen,&nbsp;Yu Zhang,&nbsp;Xiaosen Li*,&nbsp;Yuru Chen and Du Wang,&nbsp;","doi":"10.1021/cbe.4c0017410.1021/cbe.4c00174","DOIUrl":"https://doi.org/10.1021/cbe.4c00174https://doi.org/10.1021/cbe.4c00174","url":null,"abstract":"<p >The characteristics of gas production in sediments are crucial to the safe and efficient exploitation of gas hydrate resources. However, research on methane hydrate dissociation in these sediments, particularly in silty-clayey sediments, which are commonly found in nature, remains limited and contains significant gaps. To address this, a series of depressurization experiments were conducted to investigate the dissociation behavior of methane hydrate in silty-clayey sediments with montmorillonite contents ranging from 0 to 20 wt %. The results indicate that montmorillonite significantly inhibits methane hydrate dissociation. When the montmorillonite content increases from 10 to 20 wt %, the average dissociation rate of methane hydrate decreases by approximately 47%–78% compared to sandy sediments. An excess temperature drop of around 0.13 to 0.40 K was observed in the depressurization process as the montmorillonite content increased from 10 to 20 wt %. Methane hydrate dissociates unevenly in montmorillonite clay-bearing sediments due to the nonuniform distribution of the methane hydrate, coupled with the low thermal conductivity and high-water absorption capacity of montmorillonite, which restrict the supply of extra heat. The electrical resistance changes further reveal that the increased bound water content in clayey sediments reduces the impact of water fluctuation on the resistivity changes. Consequently, the resistivity changes in sandy sediments are more pronounced compared to silty-clayey sediments. These findings provide valuable insights for optimizing methane hydrate production technology via depressurization.</p>","PeriodicalId":100230,"journal":{"name":"Chem & Bio Engineering","volume":"2 4","pages":"260–271 260–271"},"PeriodicalIF":0.0,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/cbe.4c00174","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143863222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental Investigation into Dissociation Characteristics of Methane Hydrate in Sediments with Different Contents of Montmorillonite Clay. 不同蒙脱土含量沉积物中甲烷水合物解离特性的实验研究。
Chem & Bio Engineering Pub Date : 2025-03-03 eCollection Date: 2025-04-24 DOI: 10.1021/cbe.4c00174
Chang Chen, Yu Zhang, Xiaosen Li, Yuru Chen, Du Wang
{"title":"Experimental Investigation into Dissociation Characteristics of Methane Hydrate in Sediments with Different Contents of Montmorillonite Clay.","authors":"Chang Chen, Yu Zhang, Xiaosen Li, Yuru Chen, Du Wang","doi":"10.1021/cbe.4c00174","DOIUrl":"https://doi.org/10.1021/cbe.4c00174","url":null,"abstract":"<p><p>The characteristics of gas production in sediments are crucial to the safe and efficient exploitation of gas hydrate resources. However, research on methane hydrate dissociation in these sediments, particularly in silty-clayey sediments, which are commonly found in nature, remains limited and contains significant gaps. To address this, a series of depressurization experiments were conducted to investigate the dissociation behavior of methane hydrate in silty-clayey sediments with montmorillonite contents ranging from 0 to 20 wt %. The results indicate that montmorillonite significantly inhibits methane hydrate dissociation. When the montmorillonite content increases from 10 to 20 wt %, the average dissociation rate of methane hydrate decreases by approximately 47%-78% compared to sandy sediments. An excess temperature drop of around 0.13 to 0.40 K was observed in the depressurization process as the montmorillonite content increased from 10 to 20 wt %. Methane hydrate dissociates unevenly in montmorillonite clay-bearing sediments due to the nonuniform distribution of the methane hydrate, coupled with the low thermal conductivity and high-water absorption capacity of montmorillonite, which restrict the supply of extra heat. The electrical resistance changes further reveal that the increased bound water content in clayey sediments reduces the impact of water fluctuation on the resistivity changes. Consequently, the resistivity changes in sandy sediments are more pronounced compared to silty-clayey sediments. These findings provide valuable insights for optimizing methane hydrate production technology via depressurization.</p>","PeriodicalId":100230,"journal":{"name":"Chem & Bio Engineering","volume":"2 4","pages":"260-271"},"PeriodicalIF":0.0,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12035566/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144060919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advanced Separation Materials and Processes 先进的分离材料和工艺
Chem & Bio Engineering Pub Date : 2025-02-27 DOI: 10.1021/cbe.5c0000910.1021/cbe.5c00009
Zongbi Bao*,  and , Banglin Chen*, 
{"title":"Advanced Separation Materials and Processes","authors":"Zongbi Bao*,&nbsp; and ,&nbsp;Banglin Chen*,&nbsp;","doi":"10.1021/cbe.5c0000910.1021/cbe.5c00009","DOIUrl":"https://doi.org/10.1021/cbe.5c00009https://doi.org/10.1021/cbe.5c00009","url":null,"abstract":"","PeriodicalId":100230,"journal":{"name":"Chem & Bio Engineering","volume":"2 2","pages":"68–70 68–70"},"PeriodicalIF":0.0,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/cbe.5c00009","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143496235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advanced Separation Materials and Processes. 先进的分离材料和工艺。
Chem & Bio Engineering Pub Date : 2025-02-27 DOI: 10.1021/cbe.5c00009
Zongbi Bao, Banglin Chen
{"title":"Advanced Separation Materials and Processes.","authors":"Zongbi Bao, Banglin Chen","doi":"10.1021/cbe.5c00009","DOIUrl":"https://doi.org/10.1021/cbe.5c00009","url":null,"abstract":"","PeriodicalId":100230,"journal":{"name":"Chem & Bio Engineering","volume":"2 2","pages":"68-70"},"PeriodicalIF":0.0,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11873843/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143560532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信