BiogeotechnicsPub Date : 2024-01-13DOI: 10.1016/j.bgtech.2024.100070
Baoyong Liu , Mingji Liao , Yong Wan , Xingxing He , Dongli Wang
{"title":"Hydraulic characteristics and vegetation performance of the Yellow River sediment modified by biochar","authors":"Baoyong Liu , Mingji Liao , Yong Wan , Xingxing He , Dongli Wang","doi":"10.1016/j.bgtech.2024.100070","DOIUrl":"10.1016/j.bgtech.2024.100070","url":null,"abstract":"<div><p>The Yellow River sediment (YRS) is an important potential soil resource for the mine land reclamation and ecological restoration in the arid regions of northern China. However, it has the shortcomings of poor water-holding capacity and needs to be modified urgently. Therefore, two types of biochar, namely rice husk biochar (RHB) and coconut shell biochar (CSB), were utilized in this study to modify the YRS and compared with rice husk ash (RHA). Some engineering properties of the modified YRS (MYRS), including pore structure, water retention, permeability, and vegetation performance, were investigated by considering the effects of biochar types and dosages. Results showed that the addition of the three materials decreased the bulk density of the YRS and increased the volume of extremely micro pore (<em>d</em><0.3 µm), as well as the effective porosity and capillary porosity, thus contributed to an increase in the water-holding capacity of the sediment. Among the three conditioners, RHB is optimal choice for improving the water-holding capacity of YRS. Furthermore, the effect becomes more pronounced with increasing application rates. With the addition of the three materials, the permeability coefficients of MYRS gradually decreased, while the water retention rate during evaporation significantly increased. The pot experiment showed that the three conditioners all had significant promoting effect on the growth of oats. In particular, compared to plain soil, the total biomass of oats grown for 21 days increased by 17.46%, 32.14%, and 49.60% after adding 2%, 4%, and 8% RHB, respectively. This study introduces a new approach for using YRS as planting soil in arid and semi-arid areas of China to facilitate mine ecological restoration.</p></div>","PeriodicalId":100175,"journal":{"name":"Biogeotechnics","volume":"2 2","pages":"Article 100070"},"PeriodicalIF":0.0,"publicationDate":"2024-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949929124000020/pdfft?md5=bb18831666c933e2e92601c7b5f400e9&pid=1-s2.0-S2949929124000020-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139633442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiogeotechnicsPub Date : 2024-01-09DOI: 10.1016/j.bgtech.2024.100069
Huaqiang Fang, Xuanming Ding, Yifu Li, Hong Wang, Junyu Ren
{"title":"Laboratory testing on cracking characteristics and improvement mechanism of coral mud","authors":"Huaqiang Fang, Xuanming Ding, Yifu Li, Hong Wang, Junyu Ren","doi":"10.1016/j.bgtech.2024.100069","DOIUrl":"10.1016/j.bgtech.2024.100069","url":null,"abstract":"<div><p>In recent years, the development and construction of island reefs have been flourishing. Due to the remoteness of island reefs from the mainland, the scarcity of building materials, and the high transportation costs, it is imperative to use local marine resources, and the potential value and status of coral mud on island reefs, which is formed by the remains of corals and other biological entities, is becoming increasingly prominent. Utilization and optimization of natural resources on island reefs have become a brand-new research direction and challenge. This article mainly focuses on the development of a new type of green engineering material, coral mud, for use in building surface layers. Thickness effects, PVA fiber (vinylon staple fiber) modification, and HPMC (Hydroxypropyl Methyl Cellulose) adhesive modification are taken into consideration. Through laboratory tests and image processing technology, fractal theory, and electron microscopy experiments, the macro-meso-microscopic multi-scale cracking rules of the coral mud surface layer and the optimization modification rules of PVA fibers and HPMC adhesives are revealed. The results demonstrate that the performance of the coral mud surface layer is superior to that of the kaolin surface layer, and the 10 mm thickness performs better than the 5 mm and 20 mm thicknesses. As the thickness of the coral mud surface layer increases, the contact between coral mud particles becomes denser, the scale of surface micro-cracks decreases, and the number of micro-pores decreases. PVA fibers can effectively inhibit the further development of macro and micro cracks and play a good bridging role. There is a bonding and adhesion relationship between coral mud and PVA fibers, and they have a good synergistic effect in inhibiting macro and mesoscopic cracks. With the increase in HPMC adhesive content, the number of micro-cracks and the scale of micro-cracks decrease accordingly, and the structure and performance of the coral mud surface layer are further improved. Overall, PVA fibers are more effective than HPMC adhesives in inhibiting the cracking of the coral mud surface layer. This provides valuable guidance for the development and application of coral mud in wall surface materials.</p></div>","PeriodicalId":100175,"journal":{"name":"Biogeotechnics","volume":"2 2","pages":"Article 100069"},"PeriodicalIF":0.0,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949929124000019/pdfft?md5=fec38b338711bc7ea091b8ebaf46e6b0&pid=1-s2.0-S2949929124000019-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139453784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiogeotechnicsPub Date : 2024-01-01DOI: 10.1016/j.bgtech.2024.100071
Siriguleng Bai, Kai Li, Tala, Chi Li
{"title":"Triaxial compression test of MICP sand column and simulation of failure process","authors":"Siriguleng Bai, Kai Li, Tala, Chi Li","doi":"10.1016/j.bgtech.2024.100071","DOIUrl":"https://doi.org/10.1016/j.bgtech.2024.100071","url":null,"abstract":"","PeriodicalId":100175,"journal":{"name":"Biogeotechnics","volume":"334 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139632237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiogeotechnicsPub Date : 2023-12-26DOI: 10.1016/j.bgtech.2023.100068
Congying Li , Qing Cheng , Chaosheng Tang , Yingdong Gu , Lingxin Cui , Haowen Guo
{"title":"Effects of layer thickness on desiccation cracking behaviour of a vegetated soil","authors":"Congying Li , Qing Cheng , Chaosheng Tang , Yingdong Gu , Lingxin Cui , Haowen Guo","doi":"10.1016/j.bgtech.2023.100068","DOIUrl":"10.1016/j.bgtech.2023.100068","url":null,"abstract":"<div><p>The objective of this study is to explore how different layer thicknesses affect the desiccation cracking behaviour of vegetated soil. During the experiment, an electronic balance was employed to quantify water evaporation, while a digital camera was utilized to capture the initiation and progression of soil surface cracking. Results indicate that in the early drying process, the rate of evapotranspiration in vegetated soil correlates positively with leaf biomass. For soil samples with the same layer thickness, the constant rate stage duration is consistently shorter in vegetated soil samples than in their bare soil counterparts. As the layer thickness increases, both vegetated and bare soil samples crack at higher water content. However, vegetated soil samples crack at lower water content than their bare soil counterparts. Vegetation significantly reduces the soil surface crack ratio and improves the soil crack resistance. The crack reduction ratio is positively correlated with both root weight and length density. In thicker vegetated soil layers, the final surface crack length noticeably declines.</p></div>","PeriodicalId":100175,"journal":{"name":"Biogeotechnics","volume":"2 2","pages":"Article 100068"},"PeriodicalIF":0.0,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949929123000682/pdfft?md5=5ee08d7756668d880f909e435213d780&pid=1-s2.0-S2949929123000682-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139194823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiogeotechnicsPub Date : 2023-12-22DOI: 10.1016/j.bgtech.2023.100064
Ye Wang, Wenxin Xiao, Danqian Wang, Jingfeng Wang
{"title":"Fluor-silane modified nano-calcium carbonate (CaCO3) as a hydrophobic coating for the conservation of sandstone via bio-inspired design","authors":"Ye Wang, Wenxin Xiao, Danqian Wang, Jingfeng Wang","doi":"10.1016/j.bgtech.2023.100064","DOIUrl":"10.1016/j.bgtech.2023.100064","url":null,"abstract":"<div><p>Ancient cultural relics built of red sandstone have high historical value. However, due to the acceleration of the industrialization process of human civilization, increasingly frequent acid rain has caused irreversible damage to the surface of red sandstone artifacts. In this research, a fluor-silane modified nano-calcium carbonate (CaCO<sub>3</sub>) was prepared as a biomimetic hydrophobic coating for the conservation of red sandstone inspired by the lotus leaf effect. Characterizations and immersion tests were carried out to assess the protective properties of the coating. XRD, FT-IR, TEM and SEM were combined to characterize the morphology of the coating. In addition, the water contact angle was measured before and after immersion in the simulated acid rain. The results indicate that this kind of hydrophobic nano-CaCO<sub>3</sub> coating effectively protected the sandstone from the deleterious effects of acid rain.</p></div>","PeriodicalId":100175,"journal":{"name":"Biogeotechnics","volume":"2 1","pages":"Article 100064"},"PeriodicalIF":0.0,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949929123000645/pdfft?md5=359fffec740140cafcc0e2ce0ef1990f&pid=1-s2.0-S2949929123000645-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139019577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiogeotechnicsPub Date : 2023-12-21DOI: 10.1016/j.bgtech.2023.100066
Aswin Lim , Jonathan Yosuardi Sunaryo , Martin Wijaya , Alfrendo Satyanaga , Anastasia Prima Kristijarti
{"title":"Hydraulic characteristics and incubation methods for enhancing durability of Fungi- Mycelium treated silica sand using Rhizopus oligosporus and Rhizopus oryzae combination","authors":"Aswin Lim , Jonathan Yosuardi Sunaryo , Martin Wijaya , Alfrendo Satyanaga , Anastasia Prima Kristijarti","doi":"10.1016/j.bgtech.2023.100066","DOIUrl":"https://doi.org/10.1016/j.bgtech.2023.100066","url":null,"abstract":"<div><p>Nowadays, the application of Fungi as a bio-mediated soil improvement technique is developing. The hydraulic properties of Rhizopus Fungi-Mycelium Treated Soil are unknown, and the treated sample tends to have low durability. This article presents experimental results on the hydraulic conductivity and shear strength of Fungi-mycelium-treated silica sand. The fungi used in the experiments are a combination of <em>Rhizopus oligosporus</em> and <em>Rhizopus oryzae</em>, which are popular for making Tempeh, a local soybean cuisine from Indonesia. The samples were prepared by mixing the sand with Tempeh inoculum at various treatments and Tempe inoculum and rice flour dosages for enhancing the durability of the treated soil. The results showed that the saturated permeability of the treated soil could be reduced by about 10 times compared to the untreated soil. In addition, the Soil-Water Characteristic Curve of the treated soil also developed. The effect of the fungi appears to fill the void of soil and hence increases the Air Entry Value and residual suction of soil. The curing method outside the mold (O-method) with 10% Tempeh inoculum, and 5% Tempeh inoculum with 5% rice flour is proven can extend the durability of the treated sample, the undrained compressive strength is about 40 kPa on day 14. Scanning electron microscope was performed on the samples, which lasted for 4 months. The mycelium and hyphae are still clearly seen covering all sand particles with different percentages of Tempeh inoculum and rice flour. When the mycelium covered all the sand particles and filled the pores, the water flow was partially blocked. It might be attributed to the strong hydrophobicity of the fungi, which could prevent water from penetrating the soil.</p></div>","PeriodicalId":100175,"journal":{"name":"Biogeotechnics","volume":"2 1","pages":"Article 100066"},"PeriodicalIF":0.0,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949929123000669/pdfft?md5=8d85414d25dcf72d9ec9985405a6dad4&pid=1-s2.0-S2949929123000669-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139674093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiogeotechnicsPub Date : 2023-12-21DOI: 10.1016/j.bgtech.2023.100063
Chenpeng Song , Derek Elsworth
{"title":"Stress sensitivity of permeability in high-permeability sandstone sealed with microbially-induced calcium carbonate precipitation","authors":"Chenpeng Song , Derek Elsworth","doi":"10.1016/j.bgtech.2023.100063","DOIUrl":"10.1016/j.bgtech.2023.100063","url":null,"abstract":"<div><p>Microbially induced carbonate precipitation (MICP) catalyzed by <em>S. pasteurii</em> has attracted considerable attention as a bio-cement that can both strengthen and seal geomaterials. We investigate the stress sensitivity of permeability reduction for the initially high-permeability Berea sandstone (initial permeability ∼110 mD) under various durations of MICP-grouting treatment. The results indicate that after 2, 4, 6, 8 and 10 cycles of MICP-grouting, the permeabilities decrease incrementally by 87.9%, 60.9%, 38.8%, 17.3%, and then 5.4% compared to the pre-grouting condition. With increasing the duration of MICP-grouting, the sensitivity of permeability to changes in stress gradually decreases and becomes less hysteretic. This stress sensitivity of permeability is well represented by a power-law relationship with the coefficients representing three contrasting phases: an initial slow reduction, followed by a rapid drop, culminating in an asymptotic response. This variation behavior is closely related to the movement and dislocation of the quartz framework, which is controlled by the intergranular bio-cementation strength. Imaging by scanning electron microscopy (SEM) reveals the evolution of the stress sensitivity to permeability associated with the evolving microstructures after MICP-grouting. The initial precipitates of CaCO<sub>3</sub> are dispersed on the surfaces of the quartz framework and occupy the pore space, which is initially limited in controlling and reducing the displacement between particles. As the precipitates continuously accumulate, the intergranular slot-shaped pore spaces are initially bonded by bio-CaCO<sub>3</sub>, with the bonding strength progressively enhanced with the expanding volume of bio-cementation. At this stage, the intergranular movement and dislocation caused by compaction are reduced, and the stress sensitivity of the permeability is significantly reduced. As these slot-shaped pore spaces are progressively filled by the bio-cement, the movement and dislocation caused by compaction become negligible and thus the stress sensitivity of permeability is minimized.</p></div>","PeriodicalId":100175,"journal":{"name":"Biogeotechnics","volume":"2 1","pages":"Article 100063"},"PeriodicalIF":0.0,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949929123000633/pdfft?md5=780fd61c4eb5196b6868ae176ae59bb7&pid=1-s2.0-S2949929123000633-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139023676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiogeotechnicsPub Date : 2023-12-10DOI: 10.1016/j.bgtech.2023.100065
Linchang Miao, Hengxing Wang, Xiaohao Sun, Linyu Wu, Guangcai Fan
{"title":"Effect analysis of biomineralization for solidifying desert sands","authors":"Linchang Miao, Hengxing Wang, Xiaohao Sun, Linyu Wu, Guangcai Fan","doi":"10.1016/j.bgtech.2023.100065","DOIUrl":"10.1016/j.bgtech.2023.100065","url":null,"abstract":"<div><p>The sand-dust weather has become an environmental hazard in the world. However, it is still a challenge to control sandstorms and decrease sand-dust weather. The biomineralization technology for solidifying desert sands has been developed as a novel method in recent years. In this study, the wind erosion tests and verification tests of the sand solidification system were conducted via a series of laboratory experiments. The effects of sand barriers, injecting volume and concentration of the biochemical solution in the sandstorm protection were studied. Moreover, a field test of 60,000 square metres was conducted in the solidification area on both sides of the Wuma Highway in the Tengri Desert. The biomineralization technique was used to solidify sand to prevent the wind from blowing quicksand onto the newly built highway and causing accidents. Results demonstrated that the biomineralization sand solidification method had a good solidification ==effect, improved the survival rate, and promoted the growth of plants in the desert. This innovative biomineralization technology is an environmentally responsible technology to control sandstorm disasters.</p></div>","PeriodicalId":100175,"journal":{"name":"Biogeotechnics","volume":"2 1","pages":"Article 100065"},"PeriodicalIF":0.0,"publicationDate":"2023-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949929123000657/pdfft?md5=35dab4890edc913bf9130566a7dc0e90&pid=1-s2.0-S2949929123000657-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139013026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiogeotechnicsPub Date : 2023-11-29DOI: 10.1016/j.bgtech.2023.100056
Yangyang Li , Wenhui Duan
{"title":"Decoding vegetation's role in landslide susceptibility mapping: An integrated review of techniques and future directions","authors":"Yangyang Li , Wenhui Duan","doi":"10.1016/j.bgtech.2023.100056","DOIUrl":"10.1016/j.bgtech.2023.100056","url":null,"abstract":"<div><p>Rainfall-induced landslides, exacerbated by climate change, require urgent attention to identify vulnerable regions and propose effective risk mitigation measures. Extensive research underscores the significant impact of vegetation on soil properties and slope stability, emphasizing the necessity to incorporate vegetation effects into regional landslide susceptibility mapping. This review thoroughly examines research integrating vegetation into landslide susceptibility mapping, encompassing qualitative, semi-quantitative, and quantitative forecasting methods. It highlights the importance of incorporating vegetation aspects into these methods for comprehensive and accurate landslide susceptibility assessment. This review explores the diverse roles of vegetation in slope stability, covering both aggregated impacts and individual influences, including mechanical and hydrological effects on soil properties, as well as the implications of evapotranspiration and rainwater interception on slope stability. While aggregated roles are integrated into non-deterministic methods as input layers, individual roles are considered in deterministic methods. In the application of deterministic methods, it is noteworthy that a considerable number of studies primarily concentrate on the mechanical impact, particularly the reinforcement provided by root cohesion. The review also explores limitations and highlights future research prospects. In the context of mapping landslide susceptibility amid changing climatic conditions, data-driven techniques encounter challenges, while deterministic methods present their advantages. Stressing the significance of hydrological impacts, the paper recommends incorporating vegetation influences on unsaturated soil properties, including the soil water characteristic curve and soil permeability, along with pre-wetting suction due to evapotranspiration and potential rainwater interception.</p></div>","PeriodicalId":100175,"journal":{"name":"Biogeotechnics","volume":"2 1","pages":"Article 100056"},"PeriodicalIF":0.0,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949929123000566/pdfft?md5=a98dcc949fcc878560fff4db60e45e81&pid=1-s2.0-S2949929123000566-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139305148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}