BiogeotechnicsPub Date : 2024-06-08DOI: 10.1016/j.bgtech.2024.100111
Jie Yin , Lexuan Zhang , Ke Zhang , Cheng Zhang , Yang Yang , Mohamed A. Shahin , Liang Cheng
{"title":"Efficacy of milk powder additive in biocementation technique for soil stabilization","authors":"Jie Yin , Lexuan Zhang , Ke Zhang , Cheng Zhang , Yang Yang , Mohamed A. Shahin , Liang Cheng","doi":"10.1016/j.bgtech.2024.100111","DOIUrl":"10.1016/j.bgtech.2024.100111","url":null,"abstract":"<div><div>Microbial-Induced Carbonate Precipitation (MICP) is an emerging, environmental-friendly, and sustainable technology that has shown great potential for soil stabilization. However, its process efficiency has been recognized as a major challenge for its practical application in engineering. Non-fat powdered milk (NFPM) has been shown to have positive effects in enzymatical-induced carbonate precipitation (EICP), so in this study, we evaluated its use as an additive in the MICP process. A comparison between conventional MICP and NFPM-modified MICP was conducted, including chemical conversion efficiency, urea hydrolysis rate, and mechanical performance of sandy soils. A series of laboratory tests including precipitation analysis, unconfined compressive strength (UCS), and microstructure analysis were conducted. The results showed that the addition of NFPM could improve urease activity, enhance chemical conversion efficiency, and lead to superior strength improvement compared to conventional MICP. Microstructure and particle size analysis revealed that the presence of NFPM was beneficial for larger crystal cluster formation between sand grains, which could result in stronger bonds and better mechanical performance. In summary, this study indicates that the use of NFPM in MICP process can represent a more sustainable and economically viable approach for soil stabilization. The findings provide valuable information for engineers and researchers working in soil stabilization and environmental engineering, highlighting the potential of using natural additives such as NFPM to promote the sustainable development of MICP technique.</div></div>","PeriodicalId":100175,"journal":{"name":"Biogeotechnics","volume":"3 2","pages":"Article 100111"},"PeriodicalIF":0.0,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141403995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiogeotechnicsPub Date : 2024-06-04DOI: 10.1016/j.bgtech.2024.100109
{"title":"Bacterial attachment by crystal in MICP","authors":"","doi":"10.1016/j.bgtech.2024.100109","DOIUrl":"10.1016/j.bgtech.2024.100109","url":null,"abstract":"<div><p>Microbially induced calcium carbonate precipitation (MICP) is recognized as a promising technique for soil improvement. The morphological evolution of calcium carbonate (CaCO<sub>3</sub>) crystals during the MICP process significantly impacts the engineering properties of biocemented soils. However, the morphological changes of CaCO<sub>3</sub> precipitates upon bacterial adsorption onto crystal surfaces have not been sufficiently studied. This study employs real-time laser scanning confocal microscopy (LSCM) to simultaneously monitor the dynamics of CaCO<sub>3</sub> growth and bacterial attachment during the MICP process, while fluorescence staining is used to differentiate between living and dead bacteria. The results indicate that during the initial stage of the MICP process, the predominant morphology of the CaCO<sub>3</sub> crystals was elliptical, with a minor fraction exhibiting a rhombohedral morphology. Over time, additional elliptical crystals gradually formed around the existing elliptical ones. As the crystals grew, certain bacteria in the vicinity of the crystals became adsorbed onto their surfaces, irrespective of bacterial viability. However, bacterial adsorption did not alter the morphology of the crystals. The study provides microscale insights into the mechanisms of bacterial attachment to CaCO<sub>3</sub> crystals during biomineralization.</p></div>","PeriodicalId":100175,"journal":{"name":"Biogeotechnics","volume":"2 4","pages":"Article 100109"},"PeriodicalIF":0.0,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S294992912400041X/pdfft?md5=04dc589473fd579fb1f42bd12411b0c2&pid=1-s2.0-S294992912400041X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141391812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiogeotechnicsPub Date : 2024-06-03DOI: 10.1016/j.bgtech.2024.100110
Yu Diao , Jitao Bai , Gang Zheng , Qingsong Hu , Pengjin Li , Xuanqi Liu , Wendi Hu , Jianyou Huang
{"title":"Development and optimization of biomimetic-chemically induced carbonate precipitation: A review of recent research","authors":"Yu Diao , Jitao Bai , Gang Zheng , Qingsong Hu , Pengjin Li , Xuanqi Liu , Wendi Hu , Jianyou Huang","doi":"10.1016/j.bgtech.2024.100110","DOIUrl":"10.1016/j.bgtech.2024.100110","url":null,"abstract":"<div><div>With further investigation on biomineralization, biomimetic mineralization has been proposed in imitation of microorganism behavior, in which the mechanism of biomineralization is utilized for the control of the crystal growth to synthesize inorganic materials with special structures and superior physical-chemical properties. This review summarizes the recent advances in biomimetic-chemically induced carbonate precipitation (BCICP). BCICP is a biomimetic mineralization process induced by calcium carbonate crystal modifiers, which directly regulates the metathesis reaction of calcium salts with carbonates in soils to improve the soil properties. Several crystal modifiers for BCICP, including the aspartic acid (organic), the boric acid (inorganic), and the polyacrylic acid (polymer), are reviewed, and the biomimetic mineralization mechanism is introduced. In addition, current findings about BCICP in cementitious materials, soil reinforcement, dust suppression, as well as other fields are discussed, aiming to give deeper insights into the further development and application of BCICP.</div></div>","PeriodicalId":100175,"journal":{"name":"Biogeotechnics","volume":"3 1","pages":"Article 100110"},"PeriodicalIF":0.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141279618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Feasibility study of enhancing enzyme-induced carbonate precipitation with eggshell waste for sand solidification","authors":"Zhen Yan , Kazunori Nakashima , Chikara Takano , Satoru Kawasaki","doi":"10.1016/j.bgtech.2024.100108","DOIUrl":"10.1016/j.bgtech.2024.100108","url":null,"abstract":"<div><p>Utilizing Enzyme-Induced Calcium Carbonate Precipitation (EICP) reinforcement technology has emerged as an innovative approach for soil improvement. In this study, kitchen waste eggshell powder was used as an additive material for EICP. The high external surface area and affinity for calcium ions of eggshell powder, which render it a suitable nucleation site for calcium carbonate precipitation. Experimental results demonstrate that the incorporation of eggshell powder, by increasing the number of nucleation sites and promoting calcium carbonate precipitation, reduces the inhibition of enzyme products, modulates the precipitation pattern of calcium carbonate, improves particle size distribution, and consequently significantly enhances the unconfined compressive strength of the samples. Furthermore, a neutral pH is achieved within the reaction system without the addition of any acid, thus preventing significant ammonia emissions. This underscores the potential of kitchen waste eggshells for recycling in biocement applications.</p></div>","PeriodicalId":100175,"journal":{"name":"Biogeotechnics","volume":"2 4","pages":"Article 100108"},"PeriodicalIF":0.0,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949929124000408/pdfft?md5=31c66cfebad2ac171cb9b22d18ace9e3&pid=1-s2.0-S2949929124000408-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141953085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evaluating the performance and durability of concrete paving blocks enhanced by bio-cement posttreatment","authors":"Navaratnam Rathivarman , Sivakumar Yutharshan , Alakenthiran Kabishangar , Vignarajah Janani , Sivakumar Gowthaman , Thiloththama Hiranya Kumari Nawarathna , Meiqi Chen , Satoru Kawasaki","doi":"10.1016/j.bgtech.2024.100103","DOIUrl":"10.1016/j.bgtech.2024.100103","url":null,"abstract":"<div><div>Concrete pavement often experiences accelerated deterioration due to water and chemical ingress through micro-cracks and surface voids. Particularly, the ingress of aggressive agents into the concrete matrix results in irreversible changes and deterioration on its endurance. Numerous studies unveiled that hydrophobic surface protection could be an inexpensive and effective way of enhancing the durability of concrete. This research work aims to assess the feasibility of bio-cement posttreatment for facilitating hydrophobic surface protection, thus enhancing the performance and durability of concrete blocks. Enzyme induced carbonate precipitation (EICP) is one of the promising bio-cement methods. Concrete blocks casted in four different grades were subjected to EICP treatment with different treatment schemes and recipes of cementation media. The treated blocks were tested for water absorption, ultrasonic pulse velocity (UPV) measurements, unconfined compressive strength (UCS), thermal performance, and scanning electron microscopy (SEM). The results indicated that the concrete blocks subjected to EICP posttreatment showed over a 55% reduction in water absorption, a 15% higher UCS and a 6.7% higher UPV when compared with control blocks. The SEM analysis suggested that the EICP posttreatment could enhance the durability of concrete paving blocks by enabling a layer of calcite on the surface and by plugging the transport pore channels of the concrete. Although most of the posttreatment strategies investigated herein were found to be operative, a better response was seen in the posttreatment by spraying scheme with 0.5 mol/L cementation media (CM). With the successful demonstration, the EICP treatment prior to the use of concrete blocks can be recommended to the pavement construction industry.</div></div>","PeriodicalId":100175,"journal":{"name":"Biogeotechnics","volume":"3 1","pages":"Article 100103"},"PeriodicalIF":0.0,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142722190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiogeotechnicsPub Date : 2024-05-25DOI: 10.1016/j.bgtech.2024.100106
Xiaosong Huang , Rongjun Zhang , Junjie Zheng
{"title":"Comparison of the efficiency of traditional MICP and two-step MICP method for immobilizing heavy metals in aquatic environments","authors":"Xiaosong Huang , Rongjun Zhang , Junjie Zheng","doi":"10.1016/j.bgtech.2024.100106","DOIUrl":"10.1016/j.bgtech.2024.100106","url":null,"abstract":"<div><div>The application of the microbially induced carbonate precipitation (MICP) method for remediating heavy metals (i.e., HMs) has recently garnered significant attention. Nevertheless, the inhibition of urease activity by toxic Cd<sup>2+</sup>, Pb<sup>2+</sup>, Zn<sup>2+</sup>, and Cu<sup>2+</sup> poses a challenge for MICP-based remediation of HMs contamination. This study: (1) first performed the traditional MICP tests (in which the bacterial solution, urea solution, and HMs were mixed simultaneously), and investigated the toxic effect of HMs on the urease activity and the immobilization efficiency, (2) analyzed the toxicity and immobilization mechanism during the MICP process by combining the simulation and XRD tests, (3) conducted the two-step MICP tests (which initially mixed the bacterial solution and urea solution to promote urea hydrolysis, then added the HMs solutions for HMs precipitation) to improve the immobilization efficiency. The tube experiments and simulations were investigated in the HMs concentration range from 1 to 10 mmol/L. Indicators including ammonium concentration, HMs concentrations, and pH were measured/recorded during the tests. The results show that soluble HMs exhibit a concentration-dependent inhibition of urea hydrolysis during the traditional MICP process, resulting in a decreasing immobilization efficiency. The two-step MICP method can effectively immobilize almost the Cd<sup>2+</sup> and Zn<sup>2+</sup> when the initial urea hydrolysis period exceeds 1–2 h. In addition, a high immobilization rate of over 90% can be achieved for Cu-contaminated solutions at the optimal first-step reaction time. Compared with the traditional MICP procedure, the effective two-step MICP method exhibits more promising application prospects for the immobilization of soluble HMs in aquatic environments.</div></div>","PeriodicalId":100175,"journal":{"name":"Biogeotechnics","volume":"3 3","pages":"Article 100106"},"PeriodicalIF":0.0,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144563897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiogeotechnicsPub Date : 2024-05-23DOI: 10.1016/j.bgtech.2024.100105
Xinlei Zhang , Yue Sun , Yumin Chen , Lu Liu , Wenwen Li , Yi Han
{"title":"Uniformity of microbial injection for reinforcing saturated calcareous sand: A multi-test approach","authors":"Xinlei Zhang , Yue Sun , Yumin Chen , Lu Liu , Wenwen Li , Yi Han","doi":"10.1016/j.bgtech.2024.100105","DOIUrl":"10.1016/j.bgtech.2024.100105","url":null,"abstract":"<div><div>The mineralization process of microbial-induced calcium carbonate precipitation (MICP) is influenced by many factors, and the uniformity of the calcium carbonate precipitation has become the main focus and challenge for MICP technology. In this study, the uniformity of the saturated calcareous sand treated with MICP was investigated through one-dimensional calcareous sand column tests and model tests. The coefficient of variation was employed in one-dimensional sand column tests to investigate the impact of injection rate, cementation solution concentration, and number of injection cycles on the uniformity of the MICP treatment. Additionally, model tests were conducted to investigate the impact of injection pressure and methods on the treatment range and uniformity under three-dimensional seepage conditions. Test results demonstrate that the reinforcement strength and uniformity are significantly influenced by the injection rate of the cementation solution, with a rate of 3 mL/min, yielding a favorable treatment effect. Excessive concentration of the cementation solution can lead to significant non-uniformity and a reduction in the compressive strength of MICP-treated samples. Conversely, excessively low concentrations may result in decreased bonding efficiency. Among the four considered concentrations, 0.5 mol/L and 1 mol/L exhibit superior reinforcing effects. The morphological development of calcareous sandy foundation reinforcement is associated with the spatial distribution pattern of the bacterial solution, exhibiting a relatively larger reinforcement area in proximity to the lower region of the model and a gradually decreasing range towards the upper part. Under three-dimensional seepage conditions, in addition to the non-uniform radial cementation along the injection pipe, there is also vertical heterogeneity of cementation along the length of the injection pipe due to gravitational effects, resulting in preferential deposition of calcium carbonate at the lower section. The application of injection pressure and a double-pipe circulation injection method can mitigate the accumulation of bacterial solution and cementation solution at the bottom, thereby improving the reinforcement range and uniformity.</div></div>","PeriodicalId":100175,"journal":{"name":"Biogeotechnics","volume":"3 2","pages":"Article 100105"},"PeriodicalIF":0.0,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141135975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiogeotechnicsPub Date : 2024-05-05DOI: 10.1016/j.bgtech.2024.100100
{"title":"Fracture sealing based on microbially induced carbonate precipitation and its engineering applications: A review","authors":"","doi":"10.1016/j.bgtech.2024.100100","DOIUrl":"10.1016/j.bgtech.2024.100100","url":null,"abstract":"<div><p>In this review, the development and application of microbially induced carbonate precipitation (MICP) technology for the sealing of underground engineering fractures are discussed in detail. The importance of sealing micro-fractures in an environmentally friendly and efficient manner is emphasized, and the potential of the MICP method in controlling pore and fracture seepage is highlighted. The fundamental mechanisms, key influencing factors, numerical models, and applications of the MICP in the fields of geological CO<sub>2</sub> storage and oil resources development are comprehensively summarized in the paper. At the same time, the limitations of the existing research and the future research directions are discussed, especially in terms of improving the processing efficiency, environmental impacts, and cost considerations. Overall, the development of MICP technology provides a new environmentally friendly reinforcement method for geotechnical engineering and is expected to play a key role in the future development of underground space engineering.</p></div>","PeriodicalId":100175,"journal":{"name":"Biogeotechnics","volume":"2 4","pages":"Article 100100"},"PeriodicalIF":0.0,"publicationDate":"2024-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949929124000329/pdfft?md5=fb7c4687d49975432330b89a49c48ed0&pid=1-s2.0-S2949929124000329-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141048448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiogeotechnicsPub Date : 2024-05-03DOI: 10.1016/j.bgtech.2024.100098
{"title":"Endeavours to achieve sustainable marine infrastructures: A new “window” for the application of biomineralization in marine engineering","authors":"","doi":"10.1016/j.bgtech.2024.100098","DOIUrl":"10.1016/j.bgtech.2024.100098","url":null,"abstract":"","PeriodicalId":100175,"journal":{"name":"Biogeotechnics","volume":"2 4","pages":"Article 100098"},"PeriodicalIF":0.0,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949929124000305/pdfft?md5=4bbb05498059b6aa66e5c0150ad78c94&pid=1-s2.0-S2949929124000305-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141027392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}