Development and optimization of biomimetic-chemically induced carbonate precipitation: A review of recent research

Yu Diao , Jitao Bai , Gang Zheng , Qingsong Hu , Pengjin Li , Xuanqi Liu , Wendi Hu , Jianyou Huang
{"title":"Development and optimization of biomimetic-chemically induced carbonate precipitation: A review of recent research","authors":"Yu Diao ,&nbsp;Jitao Bai ,&nbsp;Gang Zheng ,&nbsp;Qingsong Hu ,&nbsp;Pengjin Li ,&nbsp;Xuanqi Liu ,&nbsp;Wendi Hu ,&nbsp;Jianyou Huang","doi":"10.1016/j.bgtech.2024.100110","DOIUrl":null,"url":null,"abstract":"<div><div>With further investigation on biomineralization, biomimetic mineralization has been proposed in imitation of microorganism behavior, in which the mechanism of biomineralization is utilized for the control of the crystal growth to synthesize inorganic materials with special structures and superior physical-chemical properties. This review summarizes the recent advances in biomimetic-chemically induced carbonate precipitation (BCICP). BCICP is a biomimetic mineralization process induced by calcium carbonate crystal modifiers, which directly regulates the metathesis reaction of calcium salts with carbonates in soils to improve the soil properties. Several crystal modifiers for BCICP, including the aspartic acid (organic), the boric acid (inorganic), and the polyacrylic acid (polymer), are reviewed, and the biomimetic mineralization mechanism is introduced. In addition, current findings about BCICP in cementitious materials, soil reinforcement, dust suppression, as well as other fields are discussed, aiming to give deeper insights into the further development and application of BCICP.</div></div>","PeriodicalId":100175,"journal":{"name":"Biogeotechnics","volume":"3 1","pages":"Article 100110"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biogeotechnics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949929124000421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With further investigation on biomineralization, biomimetic mineralization has been proposed in imitation of microorganism behavior, in which the mechanism of biomineralization is utilized for the control of the crystal growth to synthesize inorganic materials with special structures and superior physical-chemical properties. This review summarizes the recent advances in biomimetic-chemically induced carbonate precipitation (BCICP). BCICP is a biomimetic mineralization process induced by calcium carbonate crystal modifiers, which directly regulates the metathesis reaction of calcium salts with carbonates in soils to improve the soil properties. Several crystal modifiers for BCICP, including the aspartic acid (organic), the boric acid (inorganic), and the polyacrylic acid (polymer), are reviewed, and the biomimetic mineralization mechanism is introduced. In addition, current findings about BCICP in cementitious materials, soil reinforcement, dust suppression, as well as other fields are discussed, aiming to give deeper insights into the further development and application of BCICP.
仿生化学诱导碳酸盐沉淀的开发与优化:最新研究综述
随着对生物矿化的进一步研究,人们提出了模仿微生物行为的生物仿生矿化,即利用生物矿化的机制控制晶体生长,从而合成具有特殊结构和优异物理化学性能的无机材料。本综述总结了生物仿生-化学诱导碳酸盐沉淀(BCICP)的最新进展。BCICP 是碳酸钙晶体改性剂诱导的生物模拟矿化过程,它直接调节土壤中钙盐与碳酸盐的偏析反应,从而改善土壤性质。本文综述了 BCICP 的几种晶体改性剂,包括天冬氨酸(有机)、硼酸(无机)和聚丙烯酸(聚合物),并介绍了其生物仿生矿化机制。此外,还讨论了目前有关 BCICP 在胶凝材料、土壤加固、抑尘以及其他领域的研究成果,旨在为 BCICP 的进一步开发和应用提供更深入的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信