Advanced MembranesPub Date : 2024-01-01DOI: 10.1016/j.advmem.2024.100103
Aron K. Beke , Gergo Ignacz , Gyorgy Szekely
{"title":"Universal solution to the membrane selectivity challenge: Separation merit and efficiency","authors":"Aron K. Beke , Gergo Ignacz , Gyorgy Szekely","doi":"10.1016/j.advmem.2024.100103","DOIUrl":"10.1016/j.advmem.2024.100103","url":null,"abstract":"<div><p>Membrane technology holds immense potential across multiple industries, offering sustainable solutions for challenging separations by reducing energy demand and transitioning from thermal to electrical energy. The inherent diversity of membrane technology results in various transport scenarios and phenomena, rendering robust process evaluation and optimization challenging. Addressing this problem, we formulate the cascading selectivity principle (CSP), a universal concept applicable across all membrane separation types, including gas, liquid, and particle filtration. Introducing a distinction between primary and secondary permselectivity, the CSP provides a theoretical basis for novel efficiency indices. We also present the first highly versatile selectivity merit descriptors for true membrane cross-comparison. We demonstrate the advantages of the novel descriptors through a series of real-life nanofiltration, ion separation, gas separation, membrane reactor, and ultrafiltration examples. Facilitated by an online calculator tool, this work offers a standardized framework for academic and industrial professionals to implement pioneering membrane separation systems efficiently across the multiple disciplines of membrane technology.</p></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"4 ","pages":"Article 100103"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772823424000149/pdfft?md5=4b70b73bbf8742b7f8f62012e2e16a90&pid=1-s2.0-S2772823424000149-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142167466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Metal-organic frameworks-based mixed matrix pervaporation membranes for recovery of organics","authors":"Zehai Xu , Chao Liu , Lulu Xiao , Qin Meng , Guoliang Zhang","doi":"10.1016/j.advmem.2024.100092","DOIUrl":"10.1016/j.advmem.2024.100092","url":null,"abstract":"<div><p>Metal-organic framework (MOF)-based mixed matrix membranes (MMMs) have attracted significant attentions for their distinguished characteristics in pervaporation such as enhanced selectivity, increased permeability and improved mechanical strength through the synergistic integration of polymeric matrices and inorganic fillers. Although many publications have emerged in recent years focusing on MOF-based MMMs, this review specifically emphasizes the improvement of MOF-based pervaporation membranes through the design of dimension of fillers and microstructure. The challenges encountered in MOF-based MMMs for pervaporation and the essential requirements for practical separation applications are addressed. A brief summary of strategies is provided for designing MOF-based MMMs with desired microstructure, macrostructure and multicomponent characteristics by using MOFs as fillers. The latest progresses in novel MOF-based MMMs with specific compositions, controllable pore structure and improved compatibility for recovery of organics are also displayed. The broad application prospects of MOF-based MMMs in pervaporation are introduced, including recovery of ethyl alcohol, butanol and other organics. Moreover, the challenges faced in the practical application of MOF-based MMMs for recovery of organics are presented and the promising future directions are outlined.</p></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"4 ","pages":"Article 100092"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772823424000034/pdfft?md5=c12b7e142d89e0394603d14eb285bb13&pid=1-s2.0-S2772823424000034-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139816206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Advanced MembranesPub Date : 2024-01-01DOI: 10.1016/j.advmem.2024.100100
Christine Jurene O. Bacal , Catherine J. Munro , Blaise Tardy , James W. Maina , Julie A. Sharp , Joselito M. Razal , George W. Greene , Harshal H. Nandurkar , Karen M. Dwyer , Ludovic F. Dumée
{"title":"Fouling during hemodialysis – Influence of module design and membrane surface chemistry","authors":"Christine Jurene O. Bacal , Catherine J. Munro , Blaise Tardy , James W. Maina , Julie A. Sharp , Joselito M. Razal , George W. Greene , Harshal H. Nandurkar , Karen M. Dwyer , Ludovic F. Dumée","doi":"10.1016/j.advmem.2024.100100","DOIUrl":"10.1016/j.advmem.2024.100100","url":null,"abstract":"<div><p>Hemodialysis acts as an artificial kidney that selectively removes specific toxins, bio-compounds, or fluid from the main blood stream in a patient with kidney failure. The current process uses ultrafiltration-based membrane technology, where a semi-permeable material selectively extracts chemicals, such as uremic retention products, or remove excess water from blood by retaining certain compounds based on their size. As sugars, fats, proteins, biomolecules, cells, and platelets move into and across the tubular membrane in the hemodialysis process, the surface of the membrane begins to foul, which leads to major operational challenges that include sharp pressure drops with increasing operation times. The design of membranes with enhanced biocompatibility and anti-fouling properties is one avenue to increase the lifespan of the membrane used while facilitating the device operation and limiting the stress and discomfort of patients. This review presents interfacial interactions between blood components and membrane materials used in hemodialysis. The discussion analyzes the impacts of the hemodialyzer module design, membrane material morphology and surface chemistry on the long-term operation and performance of the hemodialyzers. Avenues for the development of next-generation-membrane-materials as well as new strategies to enhance the selective removal of toxic compounds from blood are also discussed.</p></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"4 ","pages":"Article 100100"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772823424000113/pdfft?md5=66dad20103d9ae034429f76049013327&pid=1-s2.0-S2772823424000113-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141134368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Advanced MembranesPub Date : 2024-01-01DOI: 10.1016/j.advmem.2023.100080
Shiliang Lin , Yanqiu Zhang , Lu Shao , Cher Hon Lau
{"title":"Spray-assisted assembly of thin-film composite membranes in one process","authors":"Shiliang Lin , Yanqiu Zhang , Lu Shao , Cher Hon Lau","doi":"10.1016/j.advmem.2023.100080","DOIUrl":"10.1016/j.advmem.2023.100080","url":null,"abstract":"<div><p>Spray coating has been exploited to fabricate and tailor the morphologies of various components in thin film composite membranes separately. For the first time, here we exploit this technology to construct and assemble both the selective layer and porous support of a thin-film composite membrane in a single process. In our approach, spray-assisted non-solvent induced phase inversion and interfacial polymerization reduced the time required to fabricate thin-film composite membranes from 3 – 4 days to 1 day and 40 min. Our approach did not sacrifice membrane separation performances during desalination of a mixture comprising 2000 ppm of NaCl in water at 4 bar and room temperature. At these conditions, compared to traditional thin film composite membranes, the water permeance of our spray coated membranes was higher by 35.7 %, reaching 2.32 L m<sup>−2</sup> h<sup>−1</sup> bar<sup>−1</sup>, while achieving a NaCl rejection rate of 94.7 %. This demonstrated the feasibility of fabricating thin film composites <em>via</em> spray coating in a single process, potentially reducing fabrication time during scale-up production.</p></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"4 ","pages":"Article 100080"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772823423000210/pdfft?md5=130328366904e35d2b38ade9104eef5d&pid=1-s2.0-S2772823423000210-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139015243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Advanced MembranesPub Date : 2024-01-01DOI: 10.1016/j.advmem.2024.100097
Cong Yu , Yu Wang , Yanfang Xia , Shuangjiang Luo , Xiaohua Ma , Ben Hang Yin , Xinbo Wang
{"title":"Polymers of intrinsic microporosity with internal dihedral lock for efficient gas separation","authors":"Cong Yu , Yu Wang , Yanfang Xia , Shuangjiang Luo , Xiaohua Ma , Ben Hang Yin , Xinbo Wang","doi":"10.1016/j.advmem.2024.100097","DOIUrl":"10.1016/j.advmem.2024.100097","url":null,"abstract":"<div><p>Polymers of intrinsic microporosity (PIMs) stand out as promising membrane materials with exceptional separation performance. In this study, we crafted a highly efficient gas separation membrane using an emerging material, called cyclohexyl-fused spirobiindane-based PIM (CCS-PIM). The CCS-PIM features a robust and rigid microporous structure with a high specific surface area (S<sub>BET</sub> = 704.6 m<sup>2</sup>/g), exhibiting excellent CO<sub>2</sub>-selective adsorption capacity. The CO<sub>2</sub> adsorption uptake is 0.78 mmol/g at 273 K and 0.15 bar, leading to IAST selectivity of 25.2 for CO<sub>2</sub>/N<sub>2</sub> (15/85 v/v) and 16.7 for CO<sub>2</sub>/CH<sub>4</sub> (50/50 v/v) at 298 K. The precisely tuned pore size of the CCS-PIM membrane leads to an enhanced molecular sieving effect, showcasing superior selectivity across various gas pair separations. It demonstrates an O<sub>2</sub>/N<sub>2</sub> selectivity of 6.03 and a CO<sub>2</sub>/CH<sub>4</sub> selectivity of 26.1, surpassing the 2008 Robeson upper bounds. This study suggests a strategic method to improve gas separation efficiency by customizing a locked PIM structure with precise molecular sieving through the insertion of variously sized rings.</p></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"4 ","pages":"Article 100097"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772823424000083/pdfft?md5=ba075832f8961665babd5e2a609b336e&pid=1-s2.0-S2772823424000083-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141134851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Advanced MembranesPub Date : 2024-01-01DOI: 10.1016/j.advmem.2024.100110
Meixia Shan , Chaoqun Niu , Decheng Liu , Dongyang Li , Xueling Wang , Junyong Zhu , Qun Xu , Jorge Gascon , Yatao Zhang
{"title":"Molecular soldered COF membrane with crystalline-amorphous heterointerface for fast organic solvent nanofiltration","authors":"Meixia Shan , Chaoqun Niu , Decheng Liu , Dongyang Li , Xueling Wang , Junyong Zhu , Qun Xu , Jorge Gascon , Yatao Zhang","doi":"10.1016/j.advmem.2024.100110","DOIUrl":"10.1016/j.advmem.2024.100110","url":null,"abstract":"<div><div>Covalent organic frameworks (COFs) featuring high porosity and well-defined pore structures are attractive candidates for organic solvent nanofiltration (OSN). However, preparing defect-free COF membrane and manipulating pore size for precise molecular separation in OSN remains a significant challenge. Herein, we address this challenge by developing composite membranes through molecular soldering a benzimidazole-linked polymer (BILP-101x) onto a continuous ACOF-1 membrane. The shared monomer of ACOF-1 and BILP-101x promotes good compatibility, allowing the amorphous BILP-101x chemically stitch the grain boundary defects of the crystalline ACOF-1 layer and create narrow, staggered pores at the interface, thereby enhancing the OSN performance. Non-equilibrium molecular dynamics simulations were employed to reproduce and explain the permeability order of the solvents and dyes, revealing a hydrogen-bond cluster permeation mode for alcohols. Furthermore, the optimized BILP-101x/ACOF-1 composite membrane exhibits excellent ethanol permeance (13.2 L m<sup>−2</sup> h<sup>−1</sup> bar<sup>−1</sup>) and outstanding rejection towards various dye molecules, together with desirable and stable OSN performance under continuous filtration operation. This work opens a new avenue for improving the separation performance of continuous COF membranes in OSN applications.</div></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"4 ","pages":"Article 100110"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142578565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Advanced MembranesPub Date : 2024-01-01DOI: 10.1016/j.advmem.2024.100093
Hao Yi Peng , Siew Kei Lau , Wai Fen Yong
{"title":"Recent advances of thin film composite nanofiltration membranes for Mg2+/Li+ separation","authors":"Hao Yi Peng , Siew Kei Lau , Wai Fen Yong","doi":"10.1016/j.advmem.2024.100093","DOIUrl":"10.1016/j.advmem.2024.100093","url":null,"abstract":"<div><p>The prevalent adoption of lithium-ion batteries (LIBs) has sparked a surge in interest regarding lithium extraction, particularly from lithium-rich brines. As some brine sources contain a higher ratio of Mg<sup>2+</sup> ions to Li <sup>+</sup> ions, Mg<sup>2+</sup>/Li<sup>+</sup> separation becomes essential to improve extraction efficiency. Multiple membrane technologies were utilized in this application, including electrodialysis, membrane capacitive deionization, and nanofiltration (NF). Among the different technologies, NF membranes fabricated through interfacial polymerization have gained interdisciplinary attention due to their ease of modification, relative simplicity, and cost-effectiveness. Despite that, there are still multiple challenges in Mg<sup>2+</sup>/Li<sup>+</sup> separation such as high Mg<sup>2+</sup>/Li<sup>+</sup> ratio (MLR), trade-off between Mg<sup>2+</sup>/Li<sup>+</sup> separation factor and pure water permeance (PWP), membrane fouling, and optimal working pH. To address these challenges, this review summarizes different nanofillers used to enhance the NF membrane performance, including carbon-based nanofillers, and polyhedral oligomeric silsesquioxane (POSS). Additionally, different NF membranes were categorized based on the modification to the interfacial polymerization, such as types of aqueous monomer, addition of nanofillers in aqueous phase, addition of nanofillers in substrate, addition of an extra layer within the membrane, and other modifications. Lastly, perspectives on the factors that affect the separation performance of the NF membranes including surface zeta potential, feed pH, pore size, hydrophilicity, and MLR will be discussed. It is anticipated that this comprehensive review can provide insights into the current progress of various modification strategies on NF membranes to drive future research and development of Mg<sup>2+</sup>/Li<sup>+</sup> separation using this technology among the community.</p></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"4 ","pages":"Article 100093"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772823424000046/pdfft?md5=3d909d7205e0ba43c2e2ba0672b39caf&pid=1-s2.0-S2772823424000046-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140088191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Advanced MembranesPub Date : 2023-01-01DOI: 10.1016/j.advmem.2023.100066
Dehua Dong, Xiangcheng Liu, Huanting Wang
{"title":"Ion-conducting ceramic membranes for renewable energy technologies","authors":"Dehua Dong, Xiangcheng Liu, Huanting Wang","doi":"10.1016/j.advmem.2023.100066","DOIUrl":"https://doi.org/10.1016/j.advmem.2023.100066","url":null,"abstract":"<div><p>Dense ceramic membranes with H<sup>+</sup> or O<sup>2−</sup> conductivity have been widely used for fuel production through electro-hydrogenation/dehydrogenation or electro-oxygenation/deoxygenation. Electrochemical conversion processes demonstrate advantages over conventional redox reaction processes in terms of capital cost, energy savings, process intensification and product selectivity. Intermittent renewable power (e.g., solar and wind power) can be used to drive electrochemical processes so that renewable energy is stored in fuels as energy carriers, including hydrogen, ammonia, syngas, methane and ethylene. This review summarizes the pathways to store renewable energy <em>via</em> ion-conducting membrane reactors and discusses the commercialization progress and prospects of these energy technologies.</p></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"3 ","pages":"Article 100066"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50199942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Advanced MembranesPub Date : 2023-01-01DOI: 10.1016/j.advmem.2023.100073
Zhihu Zhao , Guoke Zhao , Gongqing Tang , Yiqun Liu , Pei Li
{"title":"Designing high-performance pervaporation membranes with hierarchical hydrophobic-hydrophilic coating layers","authors":"Zhihu Zhao , Guoke Zhao , Gongqing Tang , Yiqun Liu , Pei Li","doi":"10.1016/j.advmem.2023.100073","DOIUrl":"https://doi.org/10.1016/j.advmem.2023.100073","url":null,"abstract":"<div><p>In this study, a multi-layer pervaporation composite membrane was prepared by spray-coating a hydrophilic layer consisting of poly(allylamine hydrochloride) (PAH)/polyvinyl alcohol (PVA)/trimesic acid (BTA) onto a polyethersulfone (PES) porous substrate. The presence of amine groups facilitated the transport of water molecules, enabling the composite membrane to exhibit excellent water/ethanol separation properties. When a feed solution consisting of 90 wt% ethanol and 10 wt% water was dehydrated using the PV membrane at 70 °C, a flux of 1.46 kg m<sup>−2</sup> h<sup>−1</sup> with a water/ethanol separation factor of 3300 was realized. In addition, after coating a 267 nm silicone rubber layer on top of the membrane, the separation factor was further increased by 70.79 % to 5285, while the flux was slightly decreased by 12.33 % to 1.28 kg m<sup>−2</sup> h<sup>−1</sup>. This was because the hydrophobic silicone rubber layer reduced the water swelling effect of the selective layer and hindered the permeation of ethanol-water coupling molecules, resulting in a reduction in the ethanol flux of the composite membrane and an improvement in the separation factor. This simple but effective method to improve dehydration properties was very useful for fabricating PV composite membranes.</p></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"3 ","pages":"Article 100073"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772823423000143/pdfft?md5=2282fda599df8891f700381bf240b669&pid=1-s2.0-S2772823423000143-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134656569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}