色谱最新文献

筛选
英文 中文
[Simultaneous determination of five indole/indazole amide-based synthetic cannabinoids in electronic cigarette oil by ultra performance liquid chromatography]. [超高效液相色谱法同时测定电子烟油中的五种吲哚/吲唑酰胺类合成大麻素]。
IF 1.2 4区 化学
色谱 Pub Date : 2023-07-01 DOI: 10.3724/SP.J.1123.2022.10014
Zhe Yang, Jian-Xia Lyu, Yi-di Wu, Li-Wei Jiang, Dong-Mei Li
{"title":"[Simultaneous determination of five indole/indazole amide-based synthetic cannabinoids in electronic cigarette oil by ultra performance liquid chromatography].","authors":"Zhe Yang, Jian-Xia Lyu, Yi-di Wu, Li-Wei Jiang, Dong-Mei Li","doi":"10.3724/SP.J.1123.2022.10014","DOIUrl":"10.3724/SP.J.1123.2022.10014","url":null,"abstract":"<p><p>Synthetic cannabinoids (SCs), which are considered some of the most widely abused new psychoactive substances available today, are much more potent than natural cannabis and display greater efficacy. New SCs can be developed by adding substituents such as halogen, alkyl, or alkoxy groups to one of the aromatic ring systems, or by changing the length of the alkyl chain. Following the emergence of the so-called first-generation SCs, further developments have led to eighth-generation indole/indazole amide-based SCs. Given that all SCs were listed as controlled substances on July 1, 2021, the technologies used to detect these substances must be quickly improved. Due to the sheer number of SCs, the chemical diversity and the fast update speed, it is challenging to determine and identify the new SCs. In recent years, several types of indole/indazole amide-based SCs have been seized, but systematic research on these compounds remains limited. Therefore, developing rapid, sensitive, and accurate quantitative methods to determine new SCs are of great importance. Compared with high performance liquid chromatography (HPLC), ultra performance liquid chromatography (UPLC) shows higher resolution, better separation efficiency, and faster analysis speeds; thus, it can meet the demand for the quantitative analysis of indole/indazole amide-based SCs in seized materials. In this study, a UPLC method was developed for the simultaneous determination of five indole/indazole amide-based SCs, including <i>N</i>-(1-amino-3,3-dimethyl-1-oxobutan-2-yl)-1-butyl-1<i>H</i>-indazole-3-carboxamide (ADB-BUTINACA), methyl 2-(1-(4-fluorobutyl)-1<i>H</i>-indole-3-carboxamido)-3,3-dimethylbutanoate (4F-MDMB-BUTICA), <i>N</i>-(1-methoxy-3,3-dimethyl-1-oxobutan-2-yl)-1-(5-fluoropentyl)-1<i>H</i>-indole-3-carboxamide (5F-MDMB-PICA), methyl 3,3-dimethyl-2-(1-(pent-4-en-1-yl)-1<i>H</i>-indazole-3-carboxamido)butanoate (MDMB-4en-PINACA), and <i>N</i>-(adamantan-1-yl)-1-(4-fluorobutyl)-1<i>H</i>-indazole-3-carboxamide (4F-ABUTINACA) in electronic cigarette oil; these SCs have been detected with increasing frequency in seized materials in recent years. The main factors influencing the separation and detection performance of the proposed method, including the mobile phase, elution gradient, column temperature, and detection wavelength, were optimized. The proposed method successfully quantified the five SCs in electronic cigarette oil via the external standard method. The samples were extracted using methanol, and the target analytes were separated on a Waters ACQUITY UPLC CSH C18 column (100 mm×2.1 mm, 1.7 μm) at column temperature of 35 ℃ and flow rate of 0.3 mL/min. The injection volume was 1 μL. The mobile phase consisted of acetonitrile and ultrapure water, and gradient elution was employed. The detection wavelengths were 290 and 302 nm. The five SCs were completely separated within 10 min under optimized conditions and showed good linear relationships between 1-100 mg/L, with co","PeriodicalId":9864,"journal":{"name":"色谱","volume":"41 7","pages":"602-609"},"PeriodicalIF":1.2,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10311626/pdf/cjc-41-07-602.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9761480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
[Simultaneous determination of 43 antibacterials from nine categories in water using automatic sample loading-solid phase extraction-ultra performance liquid chromatography-tandem mass spectrometry]. 自动进样-固相萃取-超高效液相色谱-串联质谱法同时测定水中9种43种抗菌药物
IF 0.7 4区 化学
色谱 Pub Date : 2023-07-01 DOI: 10.3724/SP.J.1123.2022.09008
Bao-Lin Xia, Shi-Tao Wang, Jing-Jing Yin, Wei-Yi Zhang, Na Yang, Qiang Liu, Hai-Jing Wu
{"title":"[Simultaneous determination of 43 antibacterials from nine categories in water using automatic sample loading-solid phase extraction-ultra performance liquid chromatography-tandem mass spectrometry].","authors":"Bao-Lin Xia, Shi-Tao Wang, Jing-Jing Yin, Wei-Yi Zhang, Na Yang, Qiang Liu, Hai-Jing Wu","doi":"10.3724/SP.J.1123.2022.09008","DOIUrl":"https://doi.org/10.3724/SP.J.1123.2022.09008","url":null,"abstract":"<p><p>Antibacterials represent a pharmaceutical class that is extensively used and consumed worldwide. The presence of a large number of antibacterial agents in water could result in antibiotic resistance. Thus, the development of a fast, accurate, and high-throughput method to analyze these emerging contaminants in water is necessary. Herein, a method was developed to achieve the simultaneous determination of 43 antibacterials from nine pharmaceutical categories (i.e., sulfonamides, quinolones, fluoroquinolones, tetracyclines, lincosamides, macrolides, nitroimidazoles, diterpenes, and dihydrofolate reductase inhibitors) in water using automatic sample loading-solid phase extraction (SPE)-ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Because the properties of these 43 antibacterials are quite different, the main objective of this work is to develop an extraction procedure that would enable the simultaneous analysis of a wide range of multiclass antibacterials. Given this context, the work presented in this paper optimized the SPE cartridge type, pH, and sample loading amount. Multiresidue extraction was performed as follows. The water samples were filtered through 0.45 μm filter membranes, added with Na<sub>2</sub>EDTA and NaH<sub>2</sub>PO<sub>4</sub>, and pH-adjusted to 2.34 using H<sub>3</sub>PO<sub>4</sub>. The solutions were then mixed with the internal standards. An automatic sample loading device fabricated by the authors was used for sample loading, and Oasis HLB cartridges were used for enrichment and purification. The optimized UPLC conditions were as follows: chromatographic column, Waters Acquity UPLC BEH C<sub>18</sub> column (50 mm×2.1 mm, 1.7 μm); mobile phases, methanol-acetonitrile (2∶8, v/v) solution containing 0.1% formic acid and 0.1% formic acid aqueous solution; flow rate, 0.3 mL/min; injection volume, 10 μL. The compounds were step scanned using an electrospray ionization source in the positive and multiple-reaction monitoring (MRM) modes, and analyzed by internal and external standard methods. The results showed that the 43 compounds achieved high linearity in their respective linear ranges, with correlation coefficients (<i>r</i><sup>2</sup>) greater than 0.996. The limits of detection (LODs) of the 43 antibacterial agents ranged from 0.004 ng/L to 1.000 ng/L, and their limits of quantification (LOQs) ranged from 0.012 ng/L to 3.000 ng/L. The average recoveries ranged from 53.7% to 130.4%, and the relative standard deviations (RSDs) were between 0.9% and 13.2%. The method was successfully applied to the determination of six tap water samples from different districts and six water samples obtained from the Jiangyin section of the Yangtze River and Xicheng Canal. No antibacterial compound was detected in any of the tap water samples, but a total of 20 antibacterial compounds were detected in the river and canal water samples. Among these compounds, sulfamethoxazole showed the highest mass co","PeriodicalId":9864,"journal":{"name":"色谱","volume":"41 7","pages":"591-601"},"PeriodicalIF":0.7,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10311621/pdf/cjc-41-07-591.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10138285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
[Determination of 13 halobenzoquinone disinfection by-products in drinking water using solid phase extraction-ultra performance liquid chromatography-triple quadrupole mass spectrometry]. [固相萃取-超高效液相色谱-三重四极杆质谱法测定饮用水中13种卤苯醌消毒副产物]。
IF 0.7 4区 化学
色谱 Pub Date : 2023-06-08 DOI: 10.3724/SP.J.1123.2022.12006
Yuan-Yuan Wang, Lu-Lu Li, Jia Lü, Yong-Yan Chen, Lan Zhang
{"title":"[Determination of 13 halobenzoquinone disinfection by-products in drinking water using solid phase extraction-ultra performance liquid chromatography-triple quadrupole mass spectrometry].","authors":"Yuan-Yuan Wang, Lu-Lu Li, Jia Lü, Yong-Yan Chen, Lan Zhang","doi":"10.3724/SP.J.1123.2022.12006","DOIUrl":"https://doi.org/10.3724/SP.J.1123.2022.12006","url":null,"abstract":"<p><p>Disinfection of drinking water is critical to prevent waterborne diseases. An unexpected consequence of water disinfection is the formation of disinfection by-products by the interaction of disinfectants with organic matter (natural or anthropogenic) and halides, which present significant toxicological effects and carcinogenic risks. As an emerging disinfection by-product, halobenzoquinones (HBQs) have attracted increasing attention owing to their severe toxicity and high detection rates. The credible determination of HBQs is essential for further studies on their occurrence, toxicity, and control measures; however, HBQs are usually detected in drinking water at trace levels. Therefore, accurate and efficient analytical techniques are critical for HBQ determination and quantitation. In this study, a method based on solid phase extraction (SPE) combined with ultra performance liquid chromatography-triple quadrupole mass spectrometry (UPLC-MS/MS) was developed to determine 13 HBQs, including six chlorobenzoquinones, six bromobenzoquinones, and one iodobenzoquinone, in drinking water. One-liter water samples were added with 2.5 mL of formic acid, and 500 mL of each sample was collected for further enrichment. Pretreatment optimization mainly focused on the SPE column, washing solvent, and nitrogen blowing temperature. After extraction using Plexa SPE columns (200 mg/6 mL), the samples were washed with ultrapure water containing 0.25% formic acid combined with 30% methanol aqueous solution containing 0.25% formic acid, eluted with 6 mL of methanol containing 0.25% formic acid, and then nitrogen blown at 30 ℃. The UPLC-MS/MS parameters were optimized by comparing the results of two reversed-phase columns (BEH C<sub>18</sub> and HSS T<sub>3</sub>) and various concentrations of formic acid in the mobile phase, as well as by establishing the best instrumental conditions. The separation of 13 HBQs was performed using an HSS T<sub>3</sub> column (100 mm×2.1 mm, 1.8 μm) via gradient elution with a mixture of 0.1% formic acid aqueous solution and methanol as the mobile phase for 16 min. The 13 HBQs were detected using a triple quadrupole mass spectrometer equipped with a negative electrospray ionization source (ESI<sup>-</sup>) in multiple reaction monitoring (MRM) mode. Matrix-matched calibration curves were used to quantify the HBQs owing to intense matrix inhibitory effects. The results reflected the good linear relationships of the 13 HBQs and yielded correlation coefficients (<i>r</i>) greater than 0.999. The method detection limits (MDLs, <i>S/N</i>=3) were 0.2-10.0 ng/L, while the method quantification limits (MQLs, <i>S/N</i>=10) were 0.6-33.0 ng/L. The recoveries of the 13 HBQs were 56%-88% at three spiked levels (10, 20, 50 ng/L), and the relative standard deviations (RSDs, <i>n</i>=6) were less than or equal to 9.2%. The optimization method was applied to analyze HBQs in five drinking water samples. Four HBQs, namely, 2,6-dichloro-1,4-benzoq","PeriodicalId":9864,"journal":{"name":"色谱","volume":"41 6","pages":"482-489"},"PeriodicalIF":0.7,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10245220/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9596224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
[Determination of polybrominated diphenyl ethers in marine sediments by composite chromatography column purification-gas chromatography-negative chemical ionization-mass spectrometry]. [复合色谱柱净化-气相色谱-负化学电离-质谱法测定海洋沉积物中的多溴二苯醚]。
IF 1.2 4区 化学
色谱 Pub Date : 2023-06-08 DOI: 10.3724/SP.J.1123.2022.10006
Jing-Yan Dong, Su-Ping Song, Xiu-Mei Sun, Yan-Jian Jin, Qing Hao, Jian Zhu, Tie-Jun Li
{"title":"[Determination of polybrominated diphenyl ethers in marine sediments by composite chromatography column purification-gas chromatography-negative chemical ionization-mass spectrometry].","authors":"Jing-Yan Dong, Su-Ping Song, Xiu-Mei Sun, Yan-Jian Jin, Qing Hao, Jian Zhu, Tie-Jun Li","doi":"10.3724/SP.J.1123.2022.10006","DOIUrl":"10.3724/SP.J.1123.2022.10006","url":null,"abstract":"<p><p>Polybrominated diphenyl ethers (PBDEs) are used as additive flame retardants. Because they lack the ability to form chemical bonds, PBDEs can easily enter the sediment environment. The accurate qualitative and quantitative analysis of PBDEs in sediments is of great importance for the accurate assessment of PBDE pollution in this environment. Sediments contain many impurities. Therefore, PBDEs in sediment should be purified before analysis to reduce the matrix effect. A method based on gas chromatography-negative chemical ionization-mass spectrometry (GC-NCI/MS) was developed to determine 13 PBDEs in marine sediment samples using a column packed with deactivated silica gel, acidified silica gel, Florisil, and anhydrous sodium sulfate. Sediment samples were extracted by ultrasonication with a mixed solvent of <i>n</i>-hexane-dichloromethane (3∶1, v/v). After two cycles of ultrasonic extraction, the extract was purified by a composite chromatographic column and eluted with <i>n</i>-hexane-dichloromethane (3∶1, v/v). Thirteen PBDEs were determined by GC-NCI/MS in selected-ion monitoring (SIM) mode. The effects of different fillers, eluents, and elution volumes on the purification of PBDEs in the composite column were compared and analyzed, and the GC-NCI/MS analysis conditions were optimized. Three different packing columns were used to purify the sample extract. The first column was packed with 3 g of deactivated silica, 6 g of acidic silica, 3 g of deactivated silica, 3 g of Florisil, and 6 g of anhydrous sodium sulfate; the second column was packed with 3 g of Florisil, 3 g of deactivated silica, 6 g of acidic silica, 3 g of deactivated silica, and 6 g of anhydrous sodium sulfate; and the third column was packed with 3 g of deactivated silica, 6 g of acidified silica, 3 g of deactivated silica, and 6 g of anhydrous sodium sulfate. Among these columns, that packed with 3 g of deactivated silica, 6 g of acidic silica, 3 g of deactivated silica, 3 g of Florisil, and 6 g of anhydrous sodium sulfate showed the best purification effect. The 13 PBDEs showed good linearity in the mass concentration range of 0.1-20 μg/L with correlation coefficients (<i>r</i><sup>2</sup>) greater than 0.995 (decabromodiphenyl oxide (BDE-209), <i>r</i><sup>2</sup>>0.99). The limits of quantification (<i>S/N</i>=10) was 0.002-0.126 μg/kg. The average recoveries of the 13 PBDEs at three spiked levels of 0.2, 1.0, and 4.0 μg/kg were 85.3%-101.3%, 84.8%-113.6%, and 86.3%-94.7% with relative standard deviations of 4.4%-14.0%, 0.4%-4.9%, and 1.9%-6.6%, respectively. These findings indicate that the method has high sensitivity and accuracy as well as good precision. Finally, the method was applied to the analysis and detection of PBDEs in actual marine sediment samples. The results revealed that the sediment samples contained different contents of the 13 PBDEs, and high detection rates were obtained for lower-brominated PBDE homologs. The detection rate of bis(4-bromophenyl)","PeriodicalId":9864,"journal":{"name":"色谱","volume":"41 6","pages":"535-542"},"PeriodicalIF":1.2,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10245216/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9589880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
[Progress in preparation of hollow nanomaterials and their application to sample pretreatment]. [空心纳米材料的制备及其在样品预处理中的应用研究进展]。
IF 0.7 4区 化学
色谱 Pub Date : 2023-06-08 DOI: 10.3724/SP.J.1123.2022.09027
Xue-Mei Wang, Li-Xia Huang, Na Yuan, Peng-Fei Huang, Xin-Zhen DU, Xiao-Quan Lu
{"title":"[Progress in preparation of hollow nanomaterials and their application to sample pretreatment].","authors":"Xue-Mei Wang, Li-Xia Huang, Na Yuan, Peng-Fei Huang, Xin-Zhen DU, Xiao-Quan Lu","doi":"10.3724/SP.J.1123.2022.09027","DOIUrl":"https://doi.org/10.3724/SP.J.1123.2022.09027","url":null,"abstract":"<p><p>Sample pretreatment technology plays a vital role in the analysis of complex samples and is key to the entire analytical process. Its main purpose is to separate the substance to be measured from the sample matrix or interfering substances in the sample and to achieve a state in which the instrument can be analyzed and detected. Traditional sample pretreatment techniques include liquid-liquid extraction, liquid-solid extraction, precipitation separation, solvent volatilization-rotary evaporation, filtration, and centrifugation. However, the applications of these methods are limited by their low extraction efficiency, complicated operation, long time consumption, unstable recovery, use of large amounts of organic solvents, and large error rates. Several new sample pretreatment techniques, including solid-phase extraction, magnetic solid-phase extraction, solid-phase microextraction, and dispersive solid-phase extraction, have been developed and rapidly applied to various fields to overcome the shortcomings of traditional sample pretreatment methods. However, the development of adsorbent materials with high selectivity and enrichment capability remains a challenge in sample pretreatment technology, in which adsorbents with excellent adsorption performance are crucial. In recent years, various nanomaterials with remarkable properties have been introduced and applied to sample pretreatment, and numerous nano-extraction materials with diverse functions and high selectivity and enrichment capability have been developed. Hollow nanomaterials are nanoparticles with large voids in their solid shells. Owing to their advantageous properties, which include a large effective surface area, abundant internal space, low density, variety of preparation methods, structural and functional tailorability, short mass transmission path, and high carrying capacity, hollow nanomaterials show great application potential in sample pretreatment. The extraction mechanism of these materials is based on the synergistic effects of <i>π-π</i> stacking, electrostatic, hydrogen-bonding, and hydrophobic interactions to achieve the efficient separation and enrichment of the target analytes. Given their noteworthy physicochemical properties, hollow nanomaterials have gained wide attention in various research fields and are considered a research frontier in the field of materials science. Changing the structure or surface properties of the core and shell can lead to various hollow nanomaterials with unique properties. Such changes can create synergy between the physicochemical properties and structural function of the original core-shell material, leading to novel materials with superior performance compared with the starting materials and broad application prospects in sample pretreatment. Nevertheless, only a few hollow nanomaterials with diverse structures and functions are currently used for sample pretreatment, and their adsorption capacity for target analytes is often unsa","PeriodicalId":9864,"journal":{"name":"色谱","volume":"41 6","pages":"457-471"},"PeriodicalIF":0.7,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10245215/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9596223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
[Determination of seven paraben preservatives in aquatic seasoning using solid-phase extraction coupled with high performance liquid chromatography]. [固相萃取-高效液相色谱法测定水产调味品中的七种对羟基苯甲酸酯防腐剂]。
IF 1.2 4区 化学
色谱 Pub Date : 2023-06-08 DOI: 10.3724/SP.J.1123.2022.10004
Xiao-Pan Ning, Qian Yao, Zhong-Xiang Xu, Yao Yin, Han Liu, Xiao-Yan Zhang, Tao Ding, Yong Zhang, Yu Hou, Meng-Ru Wang, Li-Na Wu, Qi-Ting Tang
{"title":"[Determination of seven paraben preservatives in aquatic seasoning using solid-phase extraction coupled with high performance liquid chromatography].","authors":"Xiao-Pan Ning, Qian Yao, Zhong-Xiang Xu, Yao Yin, Han Liu, Xiao-Yan Zhang, Tao Ding, Yong Zhang, Yu Hou, Meng-Ru Wang, Li-Na Wu, Qi-Ting Tang","doi":"10.3724/SP.J.1123.2022.10004","DOIUrl":"10.3724/SP.J.1123.2022.10004","url":null,"abstract":"<p><p>Seven parabens are widely used in soy sauce, vinegar, jam, oyster sauce, stuffing, and other foods. The long-term intake of large amounts of parabens and similar substances may be harmful to the human body. Therefore, the addition of paraben preservatives to food should be strictly controlled. The current detection method is applicable to single target compound and several food categories, and the experimental pretreatment method involves extraction with anhydrous ethyl ether, which is a toxic reagent. Moreover, interferences in the analysis of parabens via gas chromatography limit the versatility and accuracy of the detection method. Herein, a novel method based on solid-phase extraction (SPE) coupled with high performance liquid chromatography (HPLC) was developed for the determination of seven paraben preservatives (methyl <i>p</i>-hydroxybenzoate, ethyl <i>p</i>-hydroxybenzoate, propyl <i>p</i>-hydroxybenzoate, butyl <i>p</i>-hydroxybenzoate, isopropyl <i>p</i>-hydroxybenzoate, isobutyl <i>p</i>-hydroxybenzoate, and heptyl <i>p</i>-hydroxybenzoate) in oyster sauce, shrimp sauce, and fish sauce. Compared with the conventional method, the proposed work enables the determination of more compounds, thereby expanding its scope of application to different food types. This strategy also optimizes the pretreatment method and device parameters. The samples were extracted with methanol and 20% methanol aqueous solution by ultrasonication, respectively, and then centrifuged. The experimental pretreatment method was enriched, and sample clean-up was conducted using a MAX SPE column. The seven parabens were separated using a Chromcore 120 C18 column (150 mm×4.6 mm, 3.0 μm). Gradient elution was performed with acetonitrile-5 mmol/L ammonium acetate aqueous solution as the mobile phase (initial mobile phase volume ratio, 30∶70). The flow rate was 0.7 mL/min, and the column temperature was 35 ℃. A diode array detector with a detection wavelength of 254 nm was also used. The seven paraben preservatives showed good linearity in the range of 0.5-50.0 mg/L, with correlation coefficients greater than 0.9999. The limits of detection (LODs) and quantification (LOQs) for the seven paraben preservatives were 0.2-0.4 mg/kg and 0.5-1.3 mg/kg, respectively. A spiked recovery test was conducted using oyster sauce, shrimp sauce, and fish sauce at three spiked levels of 2, 40, and 200 mg/kg. Good recoveries for the seven paraben preservatives were obtained and the recoveries of the analytes in oyster sauce, shrimp sauce, and fish sauce were 91.0%-102%, 95.5%-106%, and 95.0%-105%, respectively, with relative standard deviations of ≤6.97%. Compared with the liquid-liquid extraction method, the proposed method demonstrated better purification effects. The recoveries of the seven paraben preservatives extracted using this method were also much higher than those obtained from liquid-liquid extraction. We determined the contents of these preservatives in 135 food products ","PeriodicalId":9864,"journal":{"name":"色谱","volume":"41 6","pages":"513-519"},"PeriodicalIF":1.2,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10245218/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9596228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
[Determination of fluoroacetic acid in human blood and urine by accelerated solvent extraction-ion chromatography-mass spectrometry]. 加速溶剂萃取色谱-质谱法测定人血液和尿液中的氟乙酸。
IF 0.7 4区 化学
色谱 Pub Date : 2023-06-08 DOI: 10.3724/SP.J.1123.2022.09019
Yu-Heng Wang, Jing-Wen Zhang, Hong-Guo Zheng, Si-Jia Lu, Su-Hua Yu, Rui-Qin Yang, Yong Wang
{"title":"[Determination of fluoroacetic acid in human blood and urine by accelerated solvent extraction-ion chromatography-mass spectrometry].","authors":"Yu-Heng Wang, Jing-Wen Zhang, Hong-Guo Zheng, Si-Jia Lu, Su-Hua Yu, Rui-Qin Yang, Yong Wang","doi":"10.3724/SP.J.1123.2022.09019","DOIUrl":"https://doi.org/10.3724/SP.J.1123.2022.09019","url":null,"abstract":"<p><p>Fluoroacetic acid is a highly polar poison used for rodent control. When ingested by the human body, it seriously damages nerve cells and heart tissues and even causes death by cardiac arrest or respiratory failure. Common detection methods for fluoroacetic acid include gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry, both of which require complex pretreatment methods, such as derivatization. In this study, a method to determine fluoroacetic acid in human blood and urine based on accelerated solvent extraction-ion chromatography-mass spectrometry (ASE-IC-MS) was established. Two pretreatment methods, namely, acetonitrile precipitation and accelerated solvent extraction, were compared. Furthermore, the effects of different extraction conditions, such as the extraction time, extraction temperature, and number of cycles, were investigated. The most suitable chromatographic separation conditions, such as the chromatographic column, column temperature, and elution procedure, were determined, and the MS conditions, such as the collision energy (CE) and declustering potential (DP) of the ion pairs of the target compound, were investigated. Based on the experimental results, the optimal pretreatment methods and detection conditions were obtained, and reliable data were collected. Deionized water was used as the extraction solvent, and blood and urine samples were processed by accelerated solvent extractor. The supernatant was sequentially collected via centrifugal ultrafiltration and 0.22 μm membrane filtration, diluted 50 times, and then injected into the chromatographic column for detection. An Ion Pac AS20 IC column was used for isocratic elution with 15.0 mmol/L KOH solution as the eluent. The effluent was passed through a suppressor and into a triple quadrupole mass spectrometer, which was used to perform MS/MS (ESI<sup>-</sup>) in multiple reaction monitoring (MRM) mode. The quantitative ion was <i>m/z</i> 77.0>57.0 when the CE and DP were -15.0 eV and -20.0 V, respectively. An external standard method was used for quantitative analysis. The results showed a good linear relationship for fluoroacetic acid in the range of 0.5-500.0 μg/L (<i>r</i>>0.999), with limits of detection (LOD) and quantification (LOQ) of 0.14 and 0.47 μg/L, respectively. The recoveries of fluoroacetic acid in blood and urine were 93.4%-95.8% and 96.2%-98.4%, respectively. The intra-day RSDs for blood and urine were 0.8%-1.6% and 0.2%-1.0%, respectively, while the inter-day RSDs were 2.3%-3.8% and 3.9%-6.9%, respectively. Further investigation revealed that the matrix effects of this method in blood and urine, at -7.4% and -3.0%, respectively, were fairly weak. The established method was successfully applied to detect fluoroacetic acid in human blood and urine obtained from a poisoning case, and the results obtained provided crucial clues that led to swift case resolution. The efficiency of the method was significantly higher than that of","PeriodicalId":9864,"journal":{"name":"色谱","volume":"41 6","pages":"497-503"},"PeriodicalIF":0.7,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10245213/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9596229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
[Determination of four aflatoxins in feeds by high throughput automated immunoaffinity magnetic beads purification-ultra performance liquid chromatography]. 高通量自动免疫亲和磁珠纯化-超高效液相色谱法测定饲料中4种黄曲霉毒素
IF 0.7 4区 化学
色谱 Pub Date : 2023-06-08 DOI: 10.3724/SP.J.1123.2022.09006
Jin-Nan Chen, Meng Wang, Ze-Min Dong, Jin Ye, Li Li, Yu Wu, Hong-Mei Liu, Song-Xue Wang
{"title":"[Determination of four aflatoxins in feeds by high throughput automated immunoaffinity magnetic beads purification-ultra performance liquid chromatography].","authors":"Jin-Nan Chen, Meng Wang, Ze-Min Dong, Jin Ye, Li Li, Yu Wu, Hong-Mei Liu, Song-Xue Wang","doi":"10.3724/SP.J.1123.2022.09006","DOIUrl":"https://doi.org/10.3724/SP.J.1123.2022.09006","url":null,"abstract":"<p><p>Aflatoxin (AFT) is an extremely toxic and highly toxic carcinogenic substance. This is particularly problematic due to the risk of aflatoxin contamination in raw feed materials and products during production, transportation, and storage. In this study, immunoaffinity magnetic beads (IMBs) were prepared for the purification of four aflatoxins (aflatoxin B<sub>1</sub> (AFB<sub>1</sub>), aflatoxin B<sub>2</sub> (AFB<sub>2</sub>), aflatoxin G<sub>1</sub> (AFG<sub>1</sub>) and aflatoxin G<sub>2</sub> (AFG<sub>2</sub>)). The aflatoxin contents were then determined rapidly and accurately using ultra performance liquid chromatography (UPLC). More specifically, the coupling ratio of magnetic beads (MBs) to the aflatoxin monoclonal antibody was initially optimized, wherein an MB volume of 1 mL and an antibody content of 2.0 mg was found to meet the purification requirements of this method. The magnetic properties of the MBs and the IMBs were then investigated using a vibrating sample magnetometer (VSM) at room temperature. As a result, the maximum saturation super magnetizations of the MBs and the IMBs were determined to be 28.61 and 23.22 emu/g, respectively, indicating that the saturation magnetization intensity of the IMBs was reduced by coupling with a non-magnetic antibody. However, the saturation magnetization intensity remained sufficiently high to permit magnetic separation from the solution. In addition, the appearance of the IMBs was examined using a biomicroscope, and it was clear that the magnetic cores were wrapped in agarose gel. Furthermore, the reaction time between the IMBs and the aflatoxins was investigated, and the optimal reaction time for meeting the purification requirements was determined to be 2 min. The stability of the IMBs was then evaluated under refrigerated storage conditions at 4 ℃. It was found that the prepared IMBs maintained a high aflatoxin enrichment capacity for at least eight months. Through the examination of three different extraction solutions, a mixture of acetonitrile and water (70∶30, v/v) was found to be optimal for the extraction of aflatoxins from the feed samples. Moreover, five sample dilutions and purification effects were also examined, and phosphate-buffered saline (containing 0.5% Tween-20) was selected as the preferred sample dilutant. With the optimized conditions, the effectiveness of using IMB for the purification of different feed samples was investigated. The resulting UPLC chromatogram showed no spurious peaks close to the target peaks, demonstrating a good purification performance. Following matrix spiking (5, 20, and 40 μg/kg, calculated based on AFB<sub>1</sub>) of the four feed samples (i. e., soybean meal, distillers dried grains with solubles, pig feed, and chicken feed), the spiked recoveries of the four aflatoxins ranged from 91.1% to 119.4% with a relative standard deviation (RSD) of <6.9%. In addition, the inter-day precision was 4.5% to 7.5%, and the method exhibited a good repr","PeriodicalId":9864,"journal":{"name":"色谱","volume":"41 6","pages":"504-512"},"PeriodicalIF":0.7,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10245217/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10301618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
[Determination of 15 halogenated polycyclic aromatic hydrocarbons in aquatic products by stable isotope dilution coupled with gas chromatography-triple quadrupole mass spectrometry]. 稳定同位素稀释-气相色谱-三重四极杆质谱联用法测定水产品中15种卤代多环芳烃
IF 0.7 4区 化学
色谱 Pub Date : 2023-06-08 DOI: 10.3724/SP.J.1123.2022.11001
Xin-Yu Li, Fang Zhao, Hua Ping, Zhi-Hong Ma, Bing-Ru Li, Ting-Jun Ma, Cheng Li
{"title":"[Determination of 15 halogenated polycyclic aromatic hydrocarbons in aquatic products by stable isotope dilution coupled with gas chromatography-triple quadrupole mass spectrometry].","authors":"Xin-Yu Li, Fang Zhao, Hua Ping, Zhi-Hong Ma, Bing-Ru Li, Ting-Jun Ma, Cheng Li","doi":"10.3724/SP.J.1123.2022.11001","DOIUrl":"https://doi.org/10.3724/SP.J.1123.2022.11001","url":null,"abstract":"<p><p>Halogenated polycyclic aromatic hydrocarbons (H-PAHs), including chlorinated polycyclic aromatic hydrocarbons (Cl-PAHs) and brominated polycyclic aromatic hydrocarbons (Br-PAHs), are compounds in which one or more hydrogen atoms replaced by chlorine or bromine atoms. These compounds are not only difficult to degrade but also highly fat soluble and toxic. They are a new type of high-risk organic pollutants with structures similar to those of dioxins, and their toxicity is even higher than that of the parent polycyclic aromatic hydrocarbons (PAHs). The bioaccumulation of H-PAHs can be predicted by their octanol-water partition coefficient (<i>K</i><sub>ow</sub>); in general, higher bioaccumulation capacity and <i>K</i><sub>ow</sub> values indicate greater fat solubility. Therefore, animal-derived foods with higher fat contents, such as animal meat, milk, aquatic products, and their processed forms, are more likely to be contaminated with higher contents of H-PAHs than those with lower fat contents. In this work, a gas chromatography-triple quadrupole mass spectrometry (GC-MS/MS) method coupled with stable isotope dilution was established to determine 15 H-PAHs in aquatic products. The instrument and pretreatment methods were systematically optimized. The GC-MS/MS used in this method can effectively eliminate matrix interferences and features high sensitivity and low analytical cost; thus, it has good application prospects. The samples were added with an isotope internal standard before extraction to calibrate the loss of the tested substance during the pretreatment process, extracted by accelerated solvent extraction, purified using gel permeation chromatography and PRiME HLB columns, and then analyzed by GC-MS/MS. The use of two DB-5MS chromatographic columns (30 m×0.25 mm×0.25 μm) and microplate fluidics technology to connect chromatographic columns 1 and 2 in series led to better separation effects, good peak shapes, and high target compound responses. The 15 H-PAHs demonstrated good linearities in the range of 1-50 μg/L, with correlation coefficients (<i>r</i>) greater than or equal to 0.993. The relative standard deviation (RSD) values of the relative response factor (RRF) of the H-PAHs were less than 9%, the method detection limit (MDL) was 0.009-0.072 μg/kg, and the method quantification limit (MQL) was 0.031-0.240 μg/kg. Three spiked levels of 0.25, 1.0, 2.5 μg/kg were added to the blank samples to determine the recovery and precision. The recoveries for these spiked levels were 74.6%-116.8%, 77.8%-123.2%, and 71.9%-124.8%, respectively, and the corresponding RSDs were 0.6%-8.2%, 0.6%-9.0%, and 0.4%-10.6%, respectively. The total actual content of H-PAHs in aquatic product samples was 0.60-3.54 μg/kg. Among the H-PAHs investigated, 9-chlorophenanthrene (9-ClPhe) showed the greatest detection rate (100%) and highest content (1.15 μg/kg), indicating that H-PAHs widely exist in aquatic products. Thus, further assessment of the dietary ex","PeriodicalId":9864,"journal":{"name":"色谱","volume":"41 6","pages":"527-534"},"PeriodicalIF":0.7,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10245212/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9589878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
[Spherical amino-functionalized covalent organic frameworks: Synthesis and adsorption performance toward perfluorinated compounds]. 球形氨基功能化共价有机框架:对全氟化合物的合成和吸附性能。
IF 0.7 4区 化学
色谱 Pub Date : 2023-06-08 DOI: 10.3724/SP.J.1123.2022.11013
Jun-Bin Ye, Jia-Wei Liu, An-Qi Cui, Xiao-Yi Wu, Hui Sun
{"title":"[Spherical amino-functionalized covalent organic frameworks: Synthesis and adsorption performance toward perfluorinated compounds].","authors":"Jun-Bin Ye, Jia-Wei Liu, An-Qi Cui, Xiao-Yi Wu, Hui Sun","doi":"10.3724/SP.J.1123.2022.11013","DOIUrl":"https://doi.org/10.3724/SP.J.1123.2022.11013","url":null,"abstract":"<p><p>Perfluorinated compounds (PFCs) are widely used in textiles, fire protection, metal electroplating, and semiconductor production owing to their hydrophobic and oil-repellent characteristics. However, they are also persistent organic pollutants. The uncontrolled discharge of PFCs into the environment has led to serious global pollution. PFCs pose severe reproductive, neural, immune, and other threats to human health by accumulating through the food chain. Thus, the development and application of high-performance extraction materials has become a research hotspot in efforts to achieve the accurate detection of trace PFCs in environmental waters. Most traditional PFC adsorbents present a number of disadvantages, such as low adsorption selectivity, slow diffusion, and poor reusability. Covalent organic frameworks (COFs) are crystalline polymers with ordered porous structures, large specific surface areas, and high chemical and thermal stability. These frameworks can easily be functionalized for the desired purpose. In this paper, spherical amino-functionalized COFs (denoted COF-NH<sub>2</sub>) were fabricated via a two-step method to effectively enrich/remove PFCs from water. First, vinyl covalent organic framework (Vinyl COF) was synthesized at room temperature using 1,4-diradical-2,5-divinylbenzene (Dva) and 1,3,5-tris(4-aminophenyl)benzene (Tab) as building blocks. Then, thioether-bridged aromatic amine-functionalized spherical COF-NH<sub>2</sub> was synthesized through a thiol-alkenyl click reaction using 4-aminothiophenol as the functional monomer. COF-NH<sub>2</sub> showed good dispersion in water owing to its abundant amino groups, forming multiple hydrogen bonds with the F atoms of PFCs. The synergistic hydrophobic interactions between the organic skeleton of the COF and alkyl carbon chains of the PFCs led to enhanced adsorption efficiency. The produced Vinyl COF and COF-NH<sub>2</sub> were characterized by Fourier transform infrared spectroscopy (FT-IR), field-emission scanning electron microscopy (SEM), powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), and Brunner-Emmet-Teller (BET) measurements. The results confirmed that spherical COF-NH<sub>2</sub> materials with a homogeneous size distribution were successfully fabricated. The obtained COF-NH<sub>2</sub> microspheres had a diameter of approximately 500 nm and exhibited high thermal stability as well as a large specific surface area and pore volume. The adsorption kinetics, isotherm adsorption models, pH effects, and regeneration properties of COF-NH<sub>2</sub> were also investigated, and the results indicated that the adsorption of PFCs by COF-NH<sub>2</sub> conformed to the pseudo-second-order kinetic and Langmuir isotherm adsorption models. The obtained COF-NH<sub>2</sub> microspheres can be applied over a wide pH range, and the best adsorption effect was achieved in neutral and alkaline environments. After five cycles of regeneration and reuse, the COF-NH<sub>","PeriodicalId":9864,"journal":{"name":"色谱","volume":"41 6","pages":"472-481"},"PeriodicalIF":0.7,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10245219/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9596225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信