Xiao-Pan Ning, Qian Yao, Zhong-Xiang Xu, Yao Yin, Han Liu, Xiao-Yan Zhang, Tao Ding, Yong Zhang, Yu Hou, Meng-Ru Wang, Li-Na Wu, Qi-Ting Tang
{"title":"[固相萃取-高效液相色谱法测定水产调味品中的七种对羟基苯甲酸酯防腐剂]。","authors":"Xiao-Pan Ning, Qian Yao, Zhong-Xiang Xu, Yao Yin, Han Liu, Xiao-Yan Zhang, Tao Ding, Yong Zhang, Yu Hou, Meng-Ru Wang, Li-Na Wu, Qi-Ting Tang","doi":"10.3724/SP.J.1123.2022.10004","DOIUrl":null,"url":null,"abstract":"<p><p>Seven parabens are widely used in soy sauce, vinegar, jam, oyster sauce, stuffing, and other foods. The long-term intake of large amounts of parabens and similar substances may be harmful to the human body. Therefore, the addition of paraben preservatives to food should be strictly controlled. The current detection method is applicable to single target compound and several food categories, and the experimental pretreatment method involves extraction with anhydrous ethyl ether, which is a toxic reagent. Moreover, interferences in the analysis of parabens via gas chromatography limit the versatility and accuracy of the detection method. Herein, a novel method based on solid-phase extraction (SPE) coupled with high performance liquid chromatography (HPLC) was developed for the determination of seven paraben preservatives (methyl <i>p</i>-hydroxybenzoate, ethyl <i>p</i>-hydroxybenzoate, propyl <i>p</i>-hydroxybenzoate, butyl <i>p</i>-hydroxybenzoate, isopropyl <i>p</i>-hydroxybenzoate, isobutyl <i>p</i>-hydroxybenzoate, and heptyl <i>p</i>-hydroxybenzoate) in oyster sauce, shrimp sauce, and fish sauce. Compared with the conventional method, the proposed work enables the determination of more compounds, thereby expanding its scope of application to different food types. This strategy also optimizes the pretreatment method and device parameters. The samples were extracted with methanol and 20% methanol aqueous solution by ultrasonication, respectively, and then centrifuged. The experimental pretreatment method was enriched, and sample clean-up was conducted using a MAX SPE column. The seven parabens were separated using a Chromcore 120 C18 column (150 mm×4.6 mm, 3.0 μm). Gradient elution was performed with acetonitrile-5 mmol/L ammonium acetate aqueous solution as the mobile phase (initial mobile phase volume ratio, 30∶70). The flow rate was 0.7 mL/min, and the column temperature was 35 ℃. A diode array detector with a detection wavelength of 254 nm was also used. The seven paraben preservatives showed good linearity in the range of 0.5-50.0 mg/L, with correlation coefficients greater than 0.9999. The limits of detection (LODs) and quantification (LOQs) for the seven paraben preservatives were 0.2-0.4 mg/kg and 0.5-1.3 mg/kg, respectively. A spiked recovery test was conducted using oyster sauce, shrimp sauce, and fish sauce at three spiked levels of 2, 40, and 200 mg/kg. Good recoveries for the seven paraben preservatives were obtained and the recoveries of the analytes in oyster sauce, shrimp sauce, and fish sauce were 91.0%-102%, 95.5%-106%, and 95.0%-105%, respectively, with relative standard deviations of ≤6.97%. Compared with the liquid-liquid extraction method, the proposed method demonstrated better purification effects. The recoveries of the seven paraben preservatives extracted using this method were also much higher than those obtained from liquid-liquid extraction. We determined the contents of these preservatives in 135 food products using the method established in this study and detected methyl <i>p</i>-hydroxybenzoate and ethyl <i>p</i>-hydroxybenzoate in soy sauce, vinegar, and pickles. Thus, the established method can be used for the effective determination of seven parabens in aquatic seasoning such as oyster sauce, shrimp sauce, and fish sauce.</p>","PeriodicalId":9864,"journal":{"name":"色谱","volume":"41 6","pages":"513-519"},"PeriodicalIF":1.2000,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10245218/pdf/","citationCount":"0","resultStr":"{\"title\":\"[Determination of seven paraben preservatives in aquatic seasoning using solid-phase extraction coupled with high performance liquid chromatography].\",\"authors\":\"Xiao-Pan Ning, Qian Yao, Zhong-Xiang Xu, Yao Yin, Han Liu, Xiao-Yan Zhang, Tao Ding, Yong Zhang, Yu Hou, Meng-Ru Wang, Li-Na Wu, Qi-Ting Tang\",\"doi\":\"10.3724/SP.J.1123.2022.10004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Seven parabens are widely used in soy sauce, vinegar, jam, oyster sauce, stuffing, and other foods. The long-term intake of large amounts of parabens and similar substances may be harmful to the human body. Therefore, the addition of paraben preservatives to food should be strictly controlled. The current detection method is applicable to single target compound and several food categories, and the experimental pretreatment method involves extraction with anhydrous ethyl ether, which is a toxic reagent. Moreover, interferences in the analysis of parabens via gas chromatography limit the versatility and accuracy of the detection method. Herein, a novel method based on solid-phase extraction (SPE) coupled with high performance liquid chromatography (HPLC) was developed for the determination of seven paraben preservatives (methyl <i>p</i>-hydroxybenzoate, ethyl <i>p</i>-hydroxybenzoate, propyl <i>p</i>-hydroxybenzoate, butyl <i>p</i>-hydroxybenzoate, isopropyl <i>p</i>-hydroxybenzoate, isobutyl <i>p</i>-hydroxybenzoate, and heptyl <i>p</i>-hydroxybenzoate) in oyster sauce, shrimp sauce, and fish sauce. Compared with the conventional method, the proposed work enables the determination of more compounds, thereby expanding its scope of application to different food types. This strategy also optimizes the pretreatment method and device parameters. The samples were extracted with methanol and 20% methanol aqueous solution by ultrasonication, respectively, and then centrifuged. The experimental pretreatment method was enriched, and sample clean-up was conducted using a MAX SPE column. The seven parabens were separated using a Chromcore 120 C18 column (150 mm×4.6 mm, 3.0 μm). Gradient elution was performed with acetonitrile-5 mmol/L ammonium acetate aqueous solution as the mobile phase (initial mobile phase volume ratio, 30∶70). The flow rate was 0.7 mL/min, and the column temperature was 35 ℃. A diode array detector with a detection wavelength of 254 nm was also used. The seven paraben preservatives showed good linearity in the range of 0.5-50.0 mg/L, with correlation coefficients greater than 0.9999. The limits of detection (LODs) and quantification (LOQs) for the seven paraben preservatives were 0.2-0.4 mg/kg and 0.5-1.3 mg/kg, respectively. A spiked recovery test was conducted using oyster sauce, shrimp sauce, and fish sauce at three spiked levels of 2, 40, and 200 mg/kg. Good recoveries for the seven paraben preservatives were obtained and the recoveries of the analytes in oyster sauce, shrimp sauce, and fish sauce were 91.0%-102%, 95.5%-106%, and 95.0%-105%, respectively, with relative standard deviations of ≤6.97%. Compared with the liquid-liquid extraction method, the proposed method demonstrated better purification effects. The recoveries of the seven paraben preservatives extracted using this method were also much higher than those obtained from liquid-liquid extraction. We determined the contents of these preservatives in 135 food products using the method established in this study and detected methyl <i>p</i>-hydroxybenzoate and ethyl <i>p</i>-hydroxybenzoate in soy sauce, vinegar, and pickles. Thus, the established method can be used for the effective determination of seven parabens in aquatic seasoning such as oyster sauce, shrimp sauce, and fish sauce.</p>\",\"PeriodicalId\":9864,\"journal\":{\"name\":\"色谱\",\"volume\":\"41 6\",\"pages\":\"513-519\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10245218/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"色谱\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3724/SP.J.1123.2022.10004\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"色谱","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3724/SP.J.1123.2022.10004","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
[Determination of seven paraben preservatives in aquatic seasoning using solid-phase extraction coupled with high performance liquid chromatography].
Seven parabens are widely used in soy sauce, vinegar, jam, oyster sauce, stuffing, and other foods. The long-term intake of large amounts of parabens and similar substances may be harmful to the human body. Therefore, the addition of paraben preservatives to food should be strictly controlled. The current detection method is applicable to single target compound and several food categories, and the experimental pretreatment method involves extraction with anhydrous ethyl ether, which is a toxic reagent. Moreover, interferences in the analysis of parabens via gas chromatography limit the versatility and accuracy of the detection method. Herein, a novel method based on solid-phase extraction (SPE) coupled with high performance liquid chromatography (HPLC) was developed for the determination of seven paraben preservatives (methyl p-hydroxybenzoate, ethyl p-hydroxybenzoate, propyl p-hydroxybenzoate, butyl p-hydroxybenzoate, isopropyl p-hydroxybenzoate, isobutyl p-hydroxybenzoate, and heptyl p-hydroxybenzoate) in oyster sauce, shrimp sauce, and fish sauce. Compared with the conventional method, the proposed work enables the determination of more compounds, thereby expanding its scope of application to different food types. This strategy also optimizes the pretreatment method and device parameters. The samples were extracted with methanol and 20% methanol aqueous solution by ultrasonication, respectively, and then centrifuged. The experimental pretreatment method was enriched, and sample clean-up was conducted using a MAX SPE column. The seven parabens were separated using a Chromcore 120 C18 column (150 mm×4.6 mm, 3.0 μm). Gradient elution was performed with acetonitrile-5 mmol/L ammonium acetate aqueous solution as the mobile phase (initial mobile phase volume ratio, 30∶70). The flow rate was 0.7 mL/min, and the column temperature was 35 ℃. A diode array detector with a detection wavelength of 254 nm was also used. The seven paraben preservatives showed good linearity in the range of 0.5-50.0 mg/L, with correlation coefficients greater than 0.9999. The limits of detection (LODs) and quantification (LOQs) for the seven paraben preservatives were 0.2-0.4 mg/kg and 0.5-1.3 mg/kg, respectively. A spiked recovery test was conducted using oyster sauce, shrimp sauce, and fish sauce at three spiked levels of 2, 40, and 200 mg/kg. Good recoveries for the seven paraben preservatives were obtained and the recoveries of the analytes in oyster sauce, shrimp sauce, and fish sauce were 91.0%-102%, 95.5%-106%, and 95.0%-105%, respectively, with relative standard deviations of ≤6.97%. Compared with the liquid-liquid extraction method, the proposed method demonstrated better purification effects. The recoveries of the seven paraben preservatives extracted using this method were also much higher than those obtained from liquid-liquid extraction. We determined the contents of these preservatives in 135 food products using the method established in this study and detected methyl p-hydroxybenzoate and ethyl p-hydroxybenzoate in soy sauce, vinegar, and pickles. Thus, the established method can be used for the effective determination of seven parabens in aquatic seasoning such as oyster sauce, shrimp sauce, and fish sauce.
期刊介绍:
"Chinese Journal of Chromatography" mainly reports the basic research results of chromatography, important application results of chromatography and its interdisciplinary subjects and their progress, including the application of new methods, new technologies, and new instruments in various fields, the research and development of chromatography instruments and components, instrument analysis teaching research, etc. It is suitable for researchers engaged in chromatography basic and application technology research in scientific research institutes, master and doctoral students in chromatography and related disciplines, grassroots researchers in the field of analysis and testing, and relevant personnel in chromatography instrument development and operation units.
The journal has columns such as special planning, focus, perspective, research express, research paper, monograph and review, micro review, technology and application, and teaching research.