Cellular Physiology and Biochemistry最新文献

筛选
英文 中文
Sphingosine-1-Phosphate Shapes Healthy Monocytes into An Immunosuppressive Phenotype. 表鞘苷-1-磷酸将健康单核细胞塑造成免疫抑制表型
Cellular Physiology and Biochemistry Pub Date : 2024-03-17 DOI: 10.33594/000000691
Michela Terlizzi, Anna Falanga, Chiara Colarusso, Aldo Pinto, Rosalinda Sorrentino
{"title":"Sphingosine-1-Phosphate Shapes Healthy Monocytes into An Immunosuppressive Phenotype.","authors":"Michela Terlizzi, Anna Falanga, Chiara Colarusso, Aldo Pinto, Rosalinda Sorrentino","doi":"10.33594/000000691","DOIUrl":"https://doi.org/10.33594/000000691","url":null,"abstract":"<p><strong>Background/aims: </strong>The physiological phenotype of individuals can influence and shape real-life phenomena in that it can contribute to the development of specific characteristics that can affect the immune response to specific stimuli. In this study we aimed to understand whether the sphingosine/sphingosine-1-phoshate (S1P) axis can modulate the immunotype of circulating cells.</p><p><strong>Methods: </strong>To pursue this goal, we performed bioinformatic analyses of public datasets.</p><p><strong>Results: </strong>The transcriptomic profile of healthy subjects of GSE192829 dataset identified two clusters with different transcriptional repertoire. Cluster 1 expressed higher levels of enzymes for S1P formation than cluster 0 which was characterized by enzymes that lead to ceramide formation, which represent the opposite metabolic direction. Inference analysis showed that cluster 1 was higher populated by monocytes, CD4<sup>+</sup> T and B cells than cluster 0. Of particular interest was the phenotype of the monocytes in cluster 1 which showed an immunosuppressive nature compared to those in cluster 0. The role of S1P signature in healthy PBMCs was confirmed with other dataset analyses, supporting that circulating monocytes positive to the ceramidase, unlike the negative ones, had an immunosuppressive phenotype characterized by hub immunosuppressive markers (i.e. TYROBP, FCER1G, SYK, SIRPA, CSF1R, AIF1, FCGR2A, CLEC7A, LYN, PLCG2, LILRs, HCK, GAB2). This hub genes well discriminated the immunotype of healthy subjects.</p><p><strong>Conclusion: </strong>In conclusion this study highlights that S1P-associated hub markers can be useful to discriminate subjects with pronounced immunosuppression.</p>","PeriodicalId":9845,"journal":{"name":"Cellular Physiology and Biochemistry","volume":"58 2","pages":"156-171"},"PeriodicalIF":0.0,"publicationDate":"2024-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140862288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Early Low-Grade Inflammation Induced by High-Salt Diet in Sprague Dawley Rats Involves Th17/Treg Axis Dysregulation, Vascular Wall Remodeling, and a Shift in the Fatty Acid Profile. Sprague Dawley 大鼠高盐饮食诱发的早期低度炎症涉及 Th17/Treg 轴失调、血管壁重塑和脂肪酸谱变化。
Cellular Physiology and Biochemistry Pub Date : 2024-02-27 DOI: 10.33594/000000684
Martina Mihalj, Mario Štefanić, Zrinka Mihaljević, Nikolina Kolobarić, Ivana Jukić, Ana Stupin, Anita Matić, Ruža Frkanec, Branka Tavčar, Anita Horvatić, Ines Drenjančević
{"title":"Early Low-Grade Inflammation Induced by High-Salt Diet in Sprague Dawley Rats Involves Th17/Treg Axis Dysregulation, Vascular Wall Remodeling, and a Shift in the Fatty Acid Profile.","authors":"Martina Mihalj, Mario Štefanić, Zrinka Mihaljević, Nikolina Kolobarić, Ivana Jukić, Ana Stupin, Anita Matić, Ruža Frkanec, Branka Tavčar, Anita Horvatić, Ines Drenjančević","doi":"10.33594/000000684","DOIUrl":"10.33594/000000684","url":null,"abstract":"<p><strong>Background/aims: </strong>Unrestricted increased table salt (NaCl) intake is associated with oxidative stress and inflammation, leading to endothelial dysfunction and atherosclerosis. However, data on salt-induced immunomodulatory effects in the earliest phase of salt loading are scarce.</p><p><strong>Methods: </strong>In the present study, an animal model of short-term salt loading was employed, including male Sprague Dawley rats consuming a high-salt diet (HSD; 4% NaCl) or standard laboratory chow (low-salt; LSD; 0.4% NaCl) during a 7-day period. The contribution of angiotensin II (ANGII) suppression was tested by adding a group of rats on a high-salt diet receiving ANGII infusions<i>.</i> Samples of peripheral blood/mesenteric lymph node leukocytes, brain blood vessels, and serum samples were processed for flow cytometry, quantitative real-time PCR, total proteome analysis, and multiplex immunoassay.</p><p><strong>Results: </strong>Data analysis revealed the up-regulation of Il 6 gene in the microcirculation of high-salt-fed rats, accompanied by an increased serum level of TNF-alpha cytokine. The high-salt diet resulted in increased proportion of serum mono-unsaturated fatty acids and saturated fatty acids, reduced levels of linoleic (C18:2 ω-6) and α-linolenic (C18:3 ω-3) acid, and increased levels of palmitoleic acid (C16:1 ω-7). The high-salt diet had distinct, lymphoid compartment-specific effects on leukocyte subpopulations, which could be attributed to the increased expression of salt-sensitive SGK-1 kinase. Complete proteome analysis revealed high-salt-diet-induced vascular tissue remodeling and perturbations in energy metabolism. Interestingly, many of the observed effects were reversed by ANGII supplementation.</p><p><strong>Conclusion: </strong>Low-grade systemic inflammation induced by a HSD could be related to suppressed ANGII levels. The effects of HSD involved changes in Th17 and Treg cell distribution, vascular wall remodeling, and a shift in lipid and arachidonic acid metabolism.</p>","PeriodicalId":9845,"journal":{"name":"Cellular Physiology and Biochemistry","volume":"58 1","pages":"83-103"},"PeriodicalIF":0.0,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140064993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Peptidylarginine Deiminases Inhibitors Decrease Endothelial Cells Angiogenic Potential by Affecting Akt Signaling and the Expression and Secretion of Angiogenic Factors. 肽基精氨酸脱氨酶抑制剂通过影响 Akt 信号以及血管生成因子的表达和分泌,降低内皮细胞的血管生成潜能。
Cellular Physiology and Biochemistry Pub Date : 2024-02-19 DOI: 10.33594/000000683
Oskar Ciesielski, Luciano Pirola, Aneta Balcerczyk
{"title":"Peptidylarginine Deiminases Inhibitors Decrease Endothelial Cells Angiogenic Potential by Affecting Akt Signaling and the Expression and Secretion of Angiogenic Factors.","authors":"Oskar Ciesielski, Luciano Pirola, Aneta Balcerczyk","doi":"10.33594/000000683","DOIUrl":"10.33594/000000683","url":null,"abstract":"<p><strong>Background/aims: </strong>Endothelial cells (ECs) play a crucial role in various physiological processes, particularly those related to the cardiovascular system, but also those affecting the entire organism. The biology of ECs is regulated by multiple biochemical stimuli and epigenetic drivers that govern gene expression. We investigated the angiogenic potential of ECs from a protein citrullination perspective, regulated by peptidyl-arginine deiminases (PADs) that modify histone and non-histone proteins. Although the involvement of PADs has been demonstrated in several physiological processes, inflammation-related disorders and cancer, their role in angiogenesis remains unclear.</p><p><strong>Methods: </strong>To elucidate the role of PADs in endothelial angiogenesis, we used two human EC models: primary vein (HUVECs) and microvascular endothelial cells (HMEC-1). PADs activity was inhibited using irreversible inhibitors: BB-Cl-amidine, Cl-amidine and F-amidine. We analyzed all three steps of angiogenesis <i>in vitro</i> : proliferation, migration, and capillary-like tube formation, as well as secretory activities, gene expression and signaling in ECs.</p><p><strong>Results: </strong>All used PAD inhibitors reduced the histone H3 citrullination (H3cit) mark, inhibited endothelial cell migration and capillary-like tube formation, and favored an angiostatic activity in HMEC-1 cells, by increasing PEDF (pigment epithelium-derived factor) and reducing VEGF (vascular endothelial growth factor) mRNA expression and protein secretion. Additionally, BB-Cl-amidine reduced the total activity of MMPs (Matrix metalloproteinases). The observed effects were underlined by the inhibition of Akt phosphorylation.>.</p><p><strong>Conclusion: </strong>Our findings suggest that pharmacological inhibitors of citrullination are promising therapeutic agents to target angiogenesis.</p>","PeriodicalId":9845,"journal":{"name":"Cellular Physiology and Biochemistry","volume":"58 1","pages":"63-82"},"PeriodicalIF":0.0,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139905182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Retraction. 撤回。
Cellular Physiology and Biochemistry Pub Date : 2024-01-31 DOI: 10.33594/000000687
{"title":"Retraction.","authors":"","doi":"10.33594/000000687","DOIUrl":"https://doi.org/10.33594/000000687","url":null,"abstract":"","PeriodicalId":9845,"journal":{"name":"Cellular Physiology and Biochemistry","volume":"58 1","pages":"106"},"PeriodicalIF":0.0,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140907851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Retraction. 撤回。
Cellular Physiology and Biochemistry Pub Date : 2024-01-31 DOI: 10.33594/000000686
{"title":"Retraction.","authors":"","doi":"10.33594/000000686","DOIUrl":"https://doi.org/10.33594/000000686","url":null,"abstract":"","PeriodicalId":9845,"journal":{"name":"Cellular Physiology and Biochemistry","volume":"58 1","pages":"105"},"PeriodicalIF":0.0,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140907847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
[6]-Shogaol Induces Apoptosis of Murine Bladder Cancer Cells. [6]-Shogaol 可诱导小鼠膀胱癌细胞凋亡。
Cellular Physiology and Biochemistry Pub Date : 2024-01-31 DOI: 10.33594/000000682
Diana Gabriela Nina Nina, Thaiane Alcarde Robeldo, Almada da Silva, Vitória Shiévila Dos Santos Gonçalves, Ricardo Carneiro Borra, Fernanda de Freitas Anibal
{"title":"[6]-Shogaol Induces Apoptosis of Murine Bladder Cancer Cells.","authors":"Diana Gabriela Nina Nina, Thaiane Alcarde Robeldo, Almada da Silva, Vitória Shiévila Dos Santos Gonçalves, Ricardo Carneiro Borra, Fernanda de Freitas Anibal","doi":"10.33594/000000682","DOIUrl":"10.33594/000000682","url":null,"abstract":"<p><strong>Background/aims: </strong>Bladder cancer is considered one of the most aggressive neoplasms due to its recurrence and progression profile, and even with the improvement in diagnosis and treatment methods, the mortality rate has not shown a declining trend in recent decades. From this perspective, the search and development of more effective and safer therapeutic alternatives are necessary. Phytochemicals are excellent sources of active principles with therapeutic potential. [6]-Shogaol is a phenolic compound extracted from the ginger rhizomes that has shown antitumor effects in a wide variety of cancer models. However, there is no record in the literature of studies reporting these effects in models of bladder cancer. Thus, this study aimed to investigate the <i>in vitro</i> cytotoxic and pro-apoptotic potential of [6]-Shogaol against murine bladder cancer urothelial cells (MB49).</p><p><strong>Methods: </strong>The cytotoxic effects of [6]-Shogaol on cell viability (MTT method), cell morphology (light microscopy), alteration of proliferative processes (clonogenic assay), oxidative stress pathway (levels of reactive oxygen species) and the induction of apoptotic events (flow cytometry and high-resolution epifluorescence imaging) were evaluated in murine urothelial bladder cancer cell lines (MB49), relative to non-tumor murine fibroblasts (L929).</p><p><strong>Results: </strong>The results showed that [6]-Shogaol was able to induce concentration-dependent cytotoxic effects, which compromised cell viability, exhibiting an inhibitory concentration of 50% of cells (IC50) of 146.8 µM for MB49 tumor cells and 236.0 µM for L929 non-tumor fibroblasts. In addition to inhibiting and altering the proliferative processes if colony formation, it presented pro-apoptotic activity identified through a quantitative analysis and the observation of apoptotic phenotypes, events apparently mediated by the induction of nuclear fragmentation.</p><p><strong>Conclusion: </strong>The data presented suggest that [6]-Shogaol has a higher concentration-dependent cytotoxic and apoptosis-inducing potential in MB49 cells than in L929 fibroblasts. These results may contribute to the development of therapeutic alternatives for bladder cancer.</p>","PeriodicalId":9845,"journal":{"name":"Cellular Physiology and Biochemistry","volume":"58 1","pages":"49-62"},"PeriodicalIF":0.0,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139701987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Retraction. 撤回。
Cellular Physiology and Biochemistry Pub Date : 2024-01-31 DOI: 10.33594/000000685
{"title":"Retraction.","authors":"","doi":"10.33594/000000685","DOIUrl":"https://doi.org/10.33594/000000685","url":null,"abstract":"","PeriodicalId":9845,"journal":{"name":"Cellular Physiology and Biochemistry","volume":"58 1","pages":"104"},"PeriodicalIF":0.0,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140907798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nitric Oxide Plays a Dual Role in Cardiorenal Syndrome in Vitro Model. 一氧化氮在心肾综合征体外模型中发挥双重作用
Cellular Physiology and Biochemistry Pub Date : 2024-01-22 DOI: 10.33594/000000681
Giovana Marchini Armentano, Joana Claudio Pieretti, Carlos Alexandre Falconi, Amedea Barozzi Seabra, Marcela Sorelli Carneiro-Ramos
{"title":"Nitric Oxide Plays a Dual Role in Cardiorenal Syndrome in Vitro Model.","authors":"Giovana Marchini Armentano, Joana Claudio Pieretti, Carlos Alexandre Falconi, Amedea Barozzi Seabra, Marcela Sorelli Carneiro-Ramos","doi":"10.33594/000000681","DOIUrl":"10.33594/000000681","url":null,"abstract":"<p><strong>Background/aims: </strong>Nitric oxide (NO) plays a dual role, acting as both an oxidant and a reducer, with various effects depending on its concentration and environment. Acute kidney injury's (AKI) pathogenesis observed in cardiorenal syndrome 3 (CRS 3) involves inflammatory responses and the production of reactive oxygen and nitrogen species. However, the role of NO on the development of CRS 3 is still not completely understood. The study aimed to mimic CRS 3 in vitro and investigate NO signaling and inflammatory molecules.</p><p><strong>Methods: </strong>Thus, HEK293 cells were submitted to normoxia (NX) or hypoxia (HX) protocols for 16 h followed by 3 h of reoxygenation, treated or not with L-NAME. Conditionate medium by HEK293 was transferred to H9c2 for 24 h. Cellular viability was evaluated by MTT assay, real time PCR was used to analyze gene expression and NO content were evaluated in the intra and extracellular medium by amperimetry.</p><p><strong>Results: </strong>Carbonic anhydrase 9 (CA9) expression increased 2.9-fold after hypoxia. Hypoxia reduced 18 % cell viability in HEK293 that was restored by L-NAME treatment. The sum of nitrite (NO2-) and S-nitrosothiol (S-NO) fractions in HEK293 cells showed a substantial decrease on NO intracellular content (38 %). Both IL-6 and IL-10 decreased in all groups compared to NX cells. Besides TNF-α and Bax/Bcl2 ratio increased in hypoxia (approximately 120-fold and 600-fold, respectively) and L-NAME restored this effect. Regarding H9c2 cells, the S-NO fractions showed a substantial decrease in extracellular content after HX (17%) that was not restored by L-NAME. IL-1β decreases in cardiac cells treated with conditioned medium from HX/L-NAME.</p><p><strong>Conclusion: </strong>In conclusion this study highlights the complex interplay of NO and inflammatory factors in hypoxia-induced renal and cardiac cell responses, with potential implications for cardiorenal syndrome.</p>","PeriodicalId":9845,"journal":{"name":"Cellular Physiology and Biochemistry","volume":"58 1","pages":"33-48"},"PeriodicalIF":0.0,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139575370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Insights on Protective Effect of Platelet Rich Plasma and Tadalafil on Testicular Ischemia/Reperfusion Injury in Rats Exposed to Testicular Torsion/Detorsion. 富血小板血浆和他达拉非对睾丸扭转/脱落大鼠睾丸缺血/再灌注损伤的保护作用的启示
Cellular Physiology and Biochemistry Pub Date : 2024-01-16 DOI: 10.33594/000000680
Dalia M Abdel Ghaffar, Zienab Helmy Eldken, Mohammed S Sultan, Rania M Khalil, Noha Hamma Sakr, Hanan Eissa, Sally M Safwat
{"title":"Insights on Protective Effect of Platelet Rich Plasma and Tadalafil on Testicular Ischemia/Reperfusion Injury in Rats Exposed to Testicular Torsion/Detorsion.","authors":"Dalia M Abdel Ghaffar, Zienab Helmy Eldken, Mohammed S Sultan, Rania M Khalil, Noha Hamma Sakr, Hanan Eissa, Sally M Safwat","doi":"10.33594/000000680","DOIUrl":"10.33594/000000680","url":null,"abstract":"<p><strong>Background/aims: </strong>Ischemic reperfusion (I-R) injury is greatly influenced by the testicular torsion/detorsion process (TDP). In this instance, the anti-inflammatory properties of plateletrich plasma (PRP) combined with tadalafil (Td) significantly promote tissue healing in the I-R injury model.</p><p><strong>Methods: </strong>Five groups of rats were created: the control group, the I-R group not receiving any therapy, the I-R group receiving a single dosage of Td (0.25 mg/kg, I.P.), the I-R group receiving a single dose of PRP (80 l, intratesticular), and the I-R group receiving both Td and PRP. Sperm morphology, motility, and histology were assessed. The levels of TNF-, BAX, antioxidant status, and testosterone were measured. Additionally, E-selectin expression was done.</p><p><strong>Results: </strong>PRP reduced oxidative stress, inflammation, and apoptosis while also boosting testosterone levels, which alleviated I-R injury. Otherwise, PRP reduces E-selectin expression, which modifies the pathways that control endothelial function. Td also partially demonstrated its testicular-protective activity at the same time.</p><p><strong>Conclusion: </strong>PRP's proven anti-inflammatory, antioxidant, and antiapoptotic potentials make it a natural treatment for testicular harm caused by tadalafil. For the first time, it was demonstrated that PRP therapy restored the functionality of the vascular endothelium, specifically the control of E-selectin expression. Combining Td and PRP therapy may be a promising strategy for improving response to PDE5 inhibitors.</p>","PeriodicalId":9845,"journal":{"name":"Cellular Physiology and Biochemistry","volume":"58 1","pages":"14-32"},"PeriodicalIF":0.0,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139485041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RING1 Inhibition Has a Cell-Specific Antitumoral Role by Promoting Autophagy in Endometrial Cancer Cells 通过促进子宫内膜癌细胞的自噬,抑制 RING1 具有细胞特异性抗肿瘤作用
Cellular Physiology and Biochemistry Pub Date : 2024-01-08 DOI: 10.33594/000000679
A. Krześlak, Aleksandra Szustka, Karolina Kozal
{"title":"RING1 Inhibition Has a Cell-Specific Antitumoral Role by Promoting Autophagy in Endometrial Cancer Cells","authors":"A. Krześlak, Aleksandra Szustka, Karolina Kozal","doi":"10.33594/000000679","DOIUrl":"https://doi.org/10.33594/000000679","url":null,"abstract":"Background/Aims: Factors influencing gene expression through chemical modifications of histones may play an important role in the regulation of the autophagy process in cancers. RING1A or RING1B are responsible for the catalytical activity of Polycomb repressive complex 1 (PRC1) which monoubiquitylate histone H2A. The aim of the study was to determine the effect of the RING1A/B protein inhibition on the autophagy process in endometrial cancer cells and the anticancer effectiveness of RING1 inhibitor PRT4165 in combination with autophagy inhibitors. Methods: The expression of autophagy genes and proteins were analyzed in endometrial cancer cells HEC-1A and Ishikawa grown in different glucose concentrations and treated with PRT4165. To assess the effectiveness of PRT4165 used alone or in combination with HCQ or Lys05, IC50 and the combination index (CI) were calculated. Flow cytometry method was used to estimate apoptotic cells after treatment. Results: The results confirm the impact of RINGs on autophagy and apoptosis in endometrial cancer cells. PRT4165 inhibitor causes changes in the expression of ATG genes and autophagy markers and the effect depends on glucose concentration and cell types. However, the anticancer effectiveness of PRT4165 was lower when it was used in combination with autophagy inhibitors, suggesting that such a combination is not a promising anticancer strategy. Conclusion: The results indicate the importance of the RINGs in the process of autophagy and apoptosis. Further potentially more effective combinations of PRT4165 with autophagy modulators should be sought.","PeriodicalId":9845,"journal":{"name":"Cellular Physiology and Biochemistry","volume":"56 23","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139447354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信