ChemphyschemPub Date : 2025-01-02Epub Date: 2024-11-08DOI: 10.1002/cphc.202400594
Tommaso Pajola, Anika Padin, Benjamin E Blowers, Francesca Borghi, Alessandro Minguzzi, Emiliano Bonera, Alberto Vertova, Marcel Di Vece
{"title":"Magnetron Sputtering Formation of Germanium Nanoparticles for Electrochemical Lithium Intercalation.","authors":"Tommaso Pajola, Anika Padin, Benjamin E Blowers, Francesca Borghi, Alessandro Minguzzi, Emiliano Bonera, Alberto Vertova, Marcel Di Vece","doi":"10.1002/cphc.202400594","DOIUrl":"10.1002/cphc.202400594","url":null,"abstract":"<p><p>In the drive towards increased lithium based battery capacity, germanium is an attractive material due to its very high lithium storage capacity, second only to silicon. The persistent down-side is the considerable embrittlement accompanying its remarkable volume expansion of close to 300 %. A proven method to accommodate for this lattice expansion is the reduction of the size towards the nanoscale at which the fracturing is prevented by \"breathing\". In this work we employed a novel magnetron sputtering gas aggregation nanoparticle generator to create unprecedented layers of well-defined germanium nanoparticles with sizes below 20 nm. The electrochemical lithium intercalation was monitored by a suite of techniques under which Raman spectroscopy, which provided clear evidence of the presence of lithium inside the germanium nanoparticles. Moreover, the degree of lattice order was measured and correlated to the initial phases of the lithium-germanium alloy. This was corroborated by electron diffraction and optical absorption spectroscopy, of which the latter provided a strong dielectric change upon lithium intercalation. This study of low lithium concentrations inside layers of well-defined and very small germanium nanoparticles, forms a new avenue towards significantly increasing the lithium battery capacity.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202400594"},"PeriodicalIF":2.3,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142307198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Unveiling the Effect of Myo-inositol on Primitive Cell Models Derived from Fatty Acid.","authors":"Meghna Ghosh, Pratyush Kiran Nandi, Nanigopal Bera, Nilmoni Sarkar","doi":"10.1002/cphc.202400826","DOIUrl":"10.1002/cphc.202400826","url":null,"abstract":"<p><p>Early forms of life on Earth were most likely not complex. Simple non-living molecules may have formed aggregates, orunderwent spontaneous complex organic reactions resulting in build-up of molecular complexity leading to origin of life. Protocell (hypothetical first live cell) models based on fatty acid self-assemblies have been used in many experiments. Sugars, amino acids and nucleic acids are the backbone of any living creature. Myo-inositol (InOH), is structurally similar to pyranose form of d-glucose. InOH not only has higher stability than simple sugars, but also not easily degraded under extreme conditions. Therefore, InOH would have persisted in the hostile environment of early Earth. Here, our objective is to study the effect of varying concentrations of InOH, a prebiotic sugar-like biomolecule, on the self-assemblies derived from oleic acid using solvation dynamics as a major experimental tool. We have demonstrated that InOH does indeed perturb the membrane of oleic acid/oleate vesicles, which is characterized by more negative zeta potential of vesicles, and faster solvation dynamics of the solvation probe C153. Overall, our results provide significant insight towards understanding the role of carbohydrate osmolytes in relation to protocell models.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202400826"},"PeriodicalIF":2.3,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142342515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemphyschemPub Date : 2025-01-02Epub Date: 2024-11-11DOI: 10.1002/cphc.202400690
Emily Chase, Justin Notestein
{"title":"Quantifying Kinetically Relevant Species on Zr-SiO<sub>2</sub> Materials for MPV Reduction.","authors":"Emily Chase, Justin Notestein","doi":"10.1002/cphc.202400690","DOIUrl":"10.1002/cphc.202400690","url":null,"abstract":"<p><p>On supported metal catalysts such as Zr-SiO<sub>2</sub>, it can be challenging to isolate characteristics that result from intrinsic properties of the active site from those that result from the environment surrounding the active site. In this report, we utilize in situ titration of Lewis acid sites with phosphonic acid to accurately and quantitatively describe kinetically relevant Zr species on Zr-SiO<sub>2</sub> materials for the MPV reduction of cyclohexanone. We find that rate of MPV reduction on Zr-SiO<sub>2</sub> materials can be described as a combination of rate over titratable Zr, that is likely well dispersed Zr, and rate over non-titratable Zr, that is likely supported ZrO<sub>x</sub>. The fraction of Zr that is well dispersed on the SiO<sub>2</sub> is dependent on the surface density at which Zr is grafted but not the choice of Zr precursor. We demonstrate that phosphonic acid titration can offer a more relevant, quantitative description of Zr dispersion than UV-vis and can be used to quantitatively describe changes that occur to the material during regeneration.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202400690"},"PeriodicalIF":2.3,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142371104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemphyschemPub Date : 2025-01-02DOI: 10.1002/cphc.202401022
Florian Trunk, Lisa Köhler, Tobias Fischer, Wolfgang Gärtner, Chen Song, Chavdar Slavov, Josef Wachtveitl
{"title":"Single GAF Domain Phytochrome Exhibits a pH-Dependent Shunt on the Millisecond Timescale.","authors":"Florian Trunk, Lisa Köhler, Tobias Fischer, Wolfgang Gärtner, Chen Song, Chavdar Slavov, Josef Wachtveitl","doi":"10.1002/cphc.202401022","DOIUrl":"10.1002/cphc.202401022","url":null,"abstract":"<p><p>The light-sensing activity of phytochromes is based on the reversible light-induced switching between two isomerization states of the bilin chromophore. These photo-transformations may not necessarily be only unidirectional, but could potentially branch back to the initial ground state in a thermally driven process termed shunt. Such shunts have been rarely reported, and thus our understanding of this process and its governing factors are limited. Here, we aim to close this gap by providing coherent experimental evidence of a shunt process using UV/Vis laser flash photolysis. We studied the Pfr to Pr dynamics of the single GAF domain (g1) construct of the knotless phytochrome All2699 from cyanobacterium Nostoc punctiforme. We identified a shunt that can be switched on and off by ambient buffer conditions. In combination with H/D exchange and kinetic modeling, we propose a keto-enol tautomerism to allow for the thermal isomerization of the chromophore and act as the driver of the shunt transition.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202401022"},"PeriodicalIF":2.3,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142913553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Quantitative Characterization of Fluorine-Centered Noncovalent Interactions in Crystalline Benzanilides.","authors":"Pradip Kumar Mondal, Rahul Shukla, Saurish Khandelwal, Kartikay Sharma, Shivani Gonde, Subha Biswas, Shubham Som, Deepak Chopra","doi":"10.1002/cphc.202400724","DOIUrl":"10.1002/cphc.202400724","url":null,"abstract":"<p><p>Six isomeric molecules, featuring a minimum of three fluorine atoms on either the benzoyl or aniline side, have been synthesized, crystallized and characterized through single crystal X-ray diffraction (SCXRD). In addition, two other compounds, containing six fluorine atoms, three on each of the benzoyl and aniline side of the benzanilide scaffold have also been characterized through SCXRD. This current study aims to augment the capacity for hydrogen bond formation, specifically involving organic fluorine, by elevating the acidity of the involved hydrogens through the incorporation of highly electronegative fluorine atoms, in the presence of strong N-H⋅⋅⋅O=C H-bonds. Lattice energy calculations and assessment of intermolecular interaction energies elucidate the contributions of electrostatics and dispersion forces in crystal packing. The topological analysis of the electron density is characterized by the presence of bond critical points (BCPs) involving C-H⋅⋅⋅F and F⋅⋅⋅F contacts, thus establishing the bonding nature of these interactions which play a crucial role in the crystal packing in addition to the presence of traditional N-H⋅⋅⋅O=C H-bonds.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202400724"},"PeriodicalIF":2.3,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142280984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemphyschemPub Date : 2025-01-02Epub Date: 2024-12-04DOI: 10.1002/cphc.202400632
Daniela Alvarado-Jiménez, Andrea Pietropolli Charmet, Paolo Stoppa, Nicola Tasinato
{"title":"The Radiative Efficiency and Global Warming Potential of HCFC-132b.","authors":"Daniela Alvarado-Jiménez, Andrea Pietropolli Charmet, Paolo Stoppa, Nicola Tasinato","doi":"10.1002/cphc.202400632","DOIUrl":"10.1002/cphc.202400632","url":null,"abstract":"<p><p>Hydro-chloro-fluoro-carbons (HCFCs) are potent greenhouse gases which strongly absorb the infrared (IR) radiation within the 8-12 μm atmospheric windows. Despite international policies schedule their phasing out by 2020 for developed countries and 2030 globally, HCFC-132b (CH<sub>2</sub>ClCClF<sub>2</sub>) has been recently detected with significant atmospheric concentration. In this scenario, detailed climate metrics are of paramount importance for understanding the capacity of anthropogenic pollutants to contribute to global warming. In this work, the radiative efficiency (RE) of HCFC-132b is experimentally measured for the first time and used to determine its global warming potential (GWP) over 20-, 100- and 500-year time horizon. Vibrational- and rotational-spectroscopic properties of this molecule are first characterized by exploiting a synergism between Fourier-transform IR (FTIR) spectroscopy experiments and quantum chemical calculations. Equilibrium geometry, rotational parameters and vibrational properties predicted theoretically beyond the double-harmonic approximation are employed to assist the vibrational assignment of the experimental trace. Finally, FTIR spectra measured over a range of pressures are used to determine the HCFC-132b absorption cross section spectrum from 150 to 3000 cm<sup>-1</sup>, from which istantaneous and effective REs are derived and, in turn, used for GWP evaluation.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202400632"},"PeriodicalIF":2.3,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142371106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemphyschemPub Date : 2025-01-02Epub Date: 2024-11-21DOI: 10.1002/cphc.202400854
Taylor M Currie, Jesse Davalos Barrios, Moc Lan Nguyen, Laurene Tetard, Titel Jurca
{"title":"Foams-To-Films: A Facile Approach Towards Space-Confined CVD Growth of MoS<sub>2</sub>.","authors":"Taylor M Currie, Jesse Davalos Barrios, Moc Lan Nguyen, Laurene Tetard, Titel Jurca","doi":"10.1002/cphc.202400854","DOIUrl":"10.1002/cphc.202400854","url":null,"abstract":"<p><p>2D materials have rapidly become the building blocks for the next generation of semiconducting materials and devices, with chemical vapor deposition (CVD) emerging as a prefered method for their synthesis. However, the predictable and reproducible growth of high quality, large 2D monolayers remains challenging. An important facet is controlling the local environment at the surface of the substrate - here, space-confinement techniques have emerged as promising candidates. We demonstrate that space-confined CVD growth using microstructured MoO<sub>x</sub> grown on Ni foam is an appealing approach for rapid growth of high quality MoS<sub>2</sub> monolayers; a very important subset of 2D materials. This method eschews the use of powders which can be more difficult to control. By incorporation of a porous barrier in the Ni foam support, the rate of delivery of both the Mo and S source to the substrate is dampened, leading to coverage of large, high quality, mono-to-few layer triangular domains as confirmed by Raman and photoluminescence (PL) spectroscopies together with atomic force microscopy (AFM) height measurements.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202400854"},"PeriodicalIF":2.3,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142567468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemphyschemPub Date : 2025-01-02Epub Date: 2024-11-20DOI: 10.1002/cphc.202400863
João Ameixa, Leo Sala, Jaroslav Kocišek, Ilko Bald
{"title":"Radiation and DNA Origami Nanotechnology: Probing Structural Integrity at the Nanoscale.","authors":"João Ameixa, Leo Sala, Jaroslav Kocišek, Ilko Bald","doi":"10.1002/cphc.202400863","DOIUrl":"10.1002/cphc.202400863","url":null,"abstract":"<p><p>DNA nanotechnology has emerged as a groundbreaking field, using DNA as a scaffold to create nanostructures with customizable properties. These DNA nanostructures hold potential across various domains, from biomedicine to studying ionizing radiation-matter interactions at the nanoscale. This review explores how the various types of radiation, covering a spectrum from electrons and photons at sub-excitation energies to ion beams with high-linear energy transfer influence the structural integrity of DNA origami nanostructures. We discuss both direct effects and those mediated by secondary species like low-energy electrons (LEEs) and reactive oxygen species (ROS). Further we discuss the possibilities for applying radiation in modulating and controlling structural changes. Based on experimental insights, we identify current challenges in characterizing the responses of DNA nanostructures to radiation and outline further areas for investigation. This review not only clarifies the complex dynamics between ionizing radiation and DNA origami but also suggests new strategies for designing DNA nanostructures optimized for applications exposed to various qualities of ionizing radiation and their resulting byproducts.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202400863"},"PeriodicalIF":2.3,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142543954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemphyschemPub Date : 2025-01-02Epub Date: 2024-11-09DOI: 10.1002/cphc.202400859
Natércia Teixeira, João Avó, Hugo Cruz, Tânia Moniz, Maria Rangel, Victor de Freitas, João C Lima, Maria J Melo, Fernando Pina
{"title":"Impact of Fe<sup>3+</sup>/Polyphenol Ratio in Iron-gall Ink on Superoxide Formation: Rationalizing Historic Recipes from a Kinetic Study.","authors":"Natércia Teixeira, João Avó, Hugo Cruz, Tânia Moniz, Maria Rangel, Victor de Freitas, João C Lima, Maria J Melo, Fernando Pina","doi":"10.1002/cphc.202400859","DOIUrl":"10.1002/cphc.202400859","url":null,"abstract":"<p><p>Iron-gall inks, a vital part of our written cultural heritage, are at risk of complete loss due to degradation, a potential loss that we must urgently address. These inks are based on Fe<sup>3+</sup>-complexes with phenolic compounds, which grow to form a complex network of iron oxyhydroxides. Over time, these black inks turn into brownish tones, with extensive degradation in paper support leading to extensive breaking. The kinetics of iron-gall ink preparation explains the use of iron sulfate, FeSO<sub>4</sub>, in all ancient recipes to obtain a stable amorphous ink. The novelty of this work shows that a low ratio of Fe<sup>3+</sup>/polyphenol is a crucial factor in allowing the ink's growth without its degradation. This ratio also prevents the formation of superoxide. This was achieved through a comprehensive research methodology involving spectroscopic techniques in the visible and the near-infrared regions, stopped-flow spectrometry and electrochemical studies.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202400859"},"PeriodicalIF":2.3,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142361205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemphyschemPub Date : 2025-01-02Epub Date: 2024-11-18DOI: 10.1002/cphc.202400569
Shilpa Simon, Parvathy Harikumar, P B Sreeja
{"title":"Green Power: The Role of Plant-Based Biochar in Advanced Energy Storage.","authors":"Shilpa Simon, Parvathy Harikumar, P B Sreeja","doi":"10.1002/cphc.202400569","DOIUrl":"10.1002/cphc.202400569","url":null,"abstract":"<p><p>This comprehensive review aims to provide an overview of recent progress in utilizing plant-based biochar for supercapacitors. It specifically focuses on biochar derived from plant biomass such as agricultural residues, weeds and aquatic plants, examining their potential in energy storage applications. It explores various synthesis methods like pyrolysis and hydrothermal carbonization and evaluates their impact on biochar's structure and electrochemical properties. Additionally, it examines the electrochemical performance of biochar-based supercapacitors, focusing on parameters such as capacitance, cycling stability, and rate capability. Strategies to enhance biochar's electrochemical performance, such as surface modification and composite fabrication, are also discussed. Furthermore, it addresses existing challenges and prospects in harnessing plant-based biochar for supercapacitor applications, highlighting its potential as a sustainable and efficient electrode material for next-generation energy storage devices.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202400569"},"PeriodicalIF":2.3,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142342510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}