Catalysts最新文献

筛选
英文 中文
Analyzing HDPE Thermal and Catalytic Degradation in Hydrogen Atmosphere: A Model-Free Approach to the Activation Energy 分析高密度聚乙烯在氢气环境中的热降解和催化降解:活化能的无模型方法
IF 3.8 3区 化学
Catalysts Pub Date : 2024-08-09 DOI: 10.3390/catal14080514
Cátia S. Costa, A. Fernandes, Marta Munoz, M. R. Ribeiro, João M. Silva
{"title":"Analyzing HDPE Thermal and Catalytic Degradation in Hydrogen Atmosphere: A Model-Free Approach to the Activation Energy","authors":"Cátia S. Costa, A. Fernandes, Marta Munoz, M. R. Ribeiro, João M. Silva","doi":"10.3390/catal14080514","DOIUrl":"https://doi.org/10.3390/catal14080514","url":null,"abstract":"Despite the great interest in thermochemical processes for converting plastic waste into chemical feedstocks or fuels, their kinetics are still a less studied topic, especially under reductive conditions. In the present work, non-isothermal thermogravimetric analysis is used to study the thermal and catalytic conversion of HDPE promoted by parent and metal-based H-USY (15) and H-ZSM-5 (11.5) zeolites under a reducing hydrogen atmosphere. Additionally, the respective kinetic parameters (apparent activation energy, Ea, and frequency factor, A) were determined by applying two distinct model-free methods: Flynn–Wall–Ozawa (FWO) and Kissinger–Akahira–Sunose (KAS). The results showed that Ea of the thermal degradation of HDPE has an average value of 227 kJ/mol for both methods. In the presence of H-USY (15) and H-ZSM-5 (11.5) zeolites, Ea is strongly reduced and is highly dependent on conversion. In the case of H-USY (15), Ea varies from 78 to 157 kJ/mol for the KAS method and from 83 to 172 kJ/mol for the FWO method. Slightly lower values are reported for H-ZSM-5, with Ea values in the range of 53–122 kJ/mol for KAS and 61–107 kJ/mol for FWO. The presence and type of the metal source (Ni, Pt, or Pd) also affect the kinetic parameters of the reaction. The mean Ea values follow the order: Ni > Pt ≈ Pd for H-USY (15) or H-ZSM-5 zeolites. Accordingly, both parent and metal-based H-USY (15) and H-ZSM-5 zeolites can significantly reduce energy consumption in HDPE hydrocracking, thus promoting a more sustainable conversion of plastic waste.","PeriodicalId":9794,"journal":{"name":"Catalysts","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141922737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polymeric Carbon Nitride-CNTs-Ferric Oxide All-Solid Z-Scheme Heterojunction with Improved Photocatalytic Activity towards Organic Dye Removal 聚合氮化碳-CNTs-氧化铁全固态 Z 型异质结提高了有机染料去除的光催化活性
IF 3.8 3区 化学
Catalysts Pub Date : 2024-08-09 DOI: 10.3390/catal14080516
Xinxin Yang, Rongcai Gong, Zhaocen Dong, Guiqing Liu, Yunyi Han, Yuwei Hou, Yanjun Li, Meili Guan, Xuezhong Gong, Jianguo Tang
{"title":"Polymeric Carbon Nitride-CNTs-Ferric Oxide All-Solid Z-Scheme Heterojunction with Improved Photocatalytic Activity towards Organic Dye Removal","authors":"Xinxin Yang, Rongcai Gong, Zhaocen Dong, Guiqing Liu, Yunyi Han, Yuwei Hou, Yanjun Li, Meili Guan, Xuezhong Gong, Jianguo Tang","doi":"10.3390/catal14080516","DOIUrl":"https://doi.org/10.3390/catal14080516","url":null,"abstract":"Polymeric carbon nitride (PCN) is a kind of polymeric semiconductor that is widely popular in photocatalysis-related energy and environmental fields. However, the photocatalytic activity is still limited due to its poor conductivity and low charge separation efficiency. In this work, benzene rings were introduced to adjust the electronic structure of PCN, and then a PCN-based all-solid Z-scheme heterojunction was fabricated by combing multiwall carbon nanotubes (CNTs) and ferric oxide through precipitation and the in situ deposit method. Upon optimizing the ratio between PCN, CNTs, and Fe2O3, (PCN:CNTs:Fe2O3 = 10:1:3 by weight), the composites expressed superior photocatalytic degradation activity towards methylene blue (MB) and crystal violet (CV) compared with pristine PCN and Fe2O3. The MB degradation percentage achieved 90% in 75 min, and the CV up to 99.6% within 50 min. The Z-scheme mechanism was verified by band alignment and metal selective deposition. The CNTs in the heterojunction played the role of an electron shuttling mediator and hence improved charge separation efficiency. This work provides ideas for the construction of polymer-inorganic all-solid Z-scheme photocatalysts for practical applications.","PeriodicalId":9794,"journal":{"name":"Catalysts","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141923222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancing Green Hydrogen Purity with Iron-Based Self-Cleaning Oxygen Carriers in Chemical Looping Hydrogen 在化学循环氢中使用铁基自清洁载氧体提高绿色氢气纯度
IF 3.8 3区 化学
Catalysts Pub Date : 2024-08-09 DOI: 10.3390/catal14080515
Fabio Blaschke, Biswal Prabhu Prasad, E. M. Charry, Katharina Halper, Maximilian Fuchs, Roland Resel, Karin Zojer, M. Lammer, Richard Hasso, Viktor Hacker
{"title":"Advancing Green Hydrogen Purity with Iron-Based Self-Cleaning Oxygen Carriers in Chemical Looping Hydrogen","authors":"Fabio Blaschke, Biswal Prabhu Prasad, E. M. Charry, Katharina Halper, Maximilian Fuchs, Roland Resel, Karin Zojer, M. Lammer, Richard Hasso, Viktor Hacker","doi":"10.3390/catal14080515","DOIUrl":"https://doi.org/10.3390/catal14080515","url":null,"abstract":"Green hydrogen is central to the energy transition, but its production often requires expensive materials and poses environmental risks due to the perfluorinated substances used in electrolysis. This study introduces a transformative approach to green hydrogen production via chemical looping, utilizing an iron-based oxygen carrier with yttrium-stabilized zirconium oxide (YSZ). A significant innovation is the replacement of Al2O3 with SiO2 as an inert support pellet, enhancing process efficiency and reducing CO2 contamination by minimizing carbon deposition by up to 700%. The major findings include achieving a remarkable hydrogen purity of 99.994% without the need for additional purification methods. The Fe-YSZ oxygen carrier possesses a significantly higher pore volume of 323 mm³/g and pore surface area of 18.3 m²/g, increasing the pore volume in the iron matrix by up to 50%, further improving efficiency. The catalytic system exhibits a unique self-cleaning effect, substantially reducing CO2 contamination. Fe-YSZ-SiO2 demonstrated CO2 contamination levels below 100 ppm, which is particularly noteworthy. This research advances our understanding of chemical looping mechanisms and offers practical, sustainable solutions for green hydrogen production, highlighting the crucial synergy between support pellets and oxygen carriers. These findings underscore the potential of chemical looping hydrogen (CLH) technology for use in efficient and environmentally friendly hydrogen production, contributing to the transition to cleaner energy sources.","PeriodicalId":9794,"journal":{"name":"Catalysts","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141924368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pt3Mn/SiO2 + ZSM-5 Bifunctional Catalyst for Ethane Dehydroaromatization 用于乙烷脱氢芳构化的 Pt3Mn/SiO2 + ZSM-5 双功能催化剂
IF 3.9 3区 化学
Catalysts Pub Date : 2024-06-04 DOI: 10.3390/catal14060365
Shan Jiang, Che-Wei Chang, William A Swann, Christina W. Li, Jeffrey T. Miller
{"title":"Pt3Mn/SiO2 + ZSM-5 Bifunctional Catalyst for Ethane Dehydroaromatization","authors":"Shan Jiang, Che-Wei Chang, William A Swann, Christina W. Li, Jeffrey T. Miller","doi":"10.3390/catal14060365","DOIUrl":"https://doi.org/10.3390/catal14060365","url":null,"abstract":"Ethane dehydroaromatization (EDA) is a potentially attractive process for converting ethane to valuable aromatics such as benzene, toluene, and xylene (BTX). In this study, a Pt3Mn/SiO2 + ZSM-5 bifunctional catalyst was used to investigate the effect of dehydrogenation and the Brønsted acid catalyst ratio, hydrogen partial pressure, and reaction temperature on the product distributions for EDA. Pt3Mn/SiO2 + ZSM-5 with a 1/1 weight ratio showed the highest ethane conversion rate and BTX formation rate. Ethylene is initially formed by dehydrogenation by the Pt3Mn catalyst, which undergoes secondary reactions on ZSM-5, forming C3+ reaction intermediates. The latter form final products of CH4 and BTX. At conversions from 15 to 30%, the BTX selectivities are 82–90%. For all bifunctional catalysts, the ethane conversion significantly exceeds the ethane–ethylene equilibrium conversion due to reaction to secondary products. Low H2 partial pressures did not significantly alter the product selectivity or conversion. However, higher H2 partial pressures resulted in increased methane and decreased BTX selectivity. The excess hydrogen saturated the olefin intermediates to form alkanes, which produced methane by monomolecular cracking on ZSM-5. With an increasing reaction temperature from 550 °C to 650 °C, the benzene selectivity increased, while the highest BTX selectivity was obtained at 600 to 650 °C.","PeriodicalId":9794,"journal":{"name":"Catalysts","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141268386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TiO2-Based Catalysts with Various Structures for Photocatalytic Application: A Review 用于光催化应用的各种结构的 TiO2 基催化剂:综述
IF 3.9 3区 化学
Catalysts Pub Date : 2024-06-04 DOI: 10.3390/catal14060366
Cheng Song, Lanqing Xiao, Yan Chen, Fan Yang, Huiying Meng, Wanying Zhang, Yifan Zhang, Yang Wu
{"title":"TiO2-Based Catalysts with Various Structures for Photocatalytic Application: A Review","authors":"Cheng Song, Lanqing Xiao, Yan Chen, Fan Yang, Huiying Meng, Wanying Zhang, Yifan Zhang, Yang Wu","doi":"10.3390/catal14060366","DOIUrl":"https://doi.org/10.3390/catal14060366","url":null,"abstract":"TiO2-based catalysts with various surface heterostructures (0D, 1D, 2D, and 3D) have been widely researched owing to their cost-effectiveness, high stability, and environmentally friendly nature, and can be used for many applications in various fields, including hydrogen production and pollutant degradation. However, there are also many existing problems limiting their practical application, such as their large band gap and rapid electron–hole recombination rate. Owing to the abundance of recent achievements in materials science, we will summarize the recent structural engineering strategies which provide favorable photocatalytic activity enhancements, such as enhanced visible light absorption, stability, an increased charge–carrier separation rate and improved specific surface area. Among the various structural engineering methods in this review, we will introduce TiO2-based materials with different dimensional structures. Meanwhile, we also discuss recent achievements in synthesis methods and application of TiO2-based catalysts in various fields. We aim to display a comprehensive overview which can be a guide for the development of a new generation of TiO2-based catalysts according to their structural design for enhanced solar energy conversion.","PeriodicalId":9794,"journal":{"name":"Catalysts","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141266862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modification of NiSe2 Nanoparticles by ZIF-8-Derived NC for Boosting H2O2 Production from Electrochemical Oxygen Reduction in Acidic Media 用 ZIF-8 衍生的 NC 对 NiSe2 纳米粒子进行改性,以提高酸性介质中电化学氧还原法产生 H2O2 的能力
IF 3.9 3区 化学
Catalysts Pub Date : 2024-06-03 DOI: 10.3390/catal14060364
Qiaoting Cheng, Hu Ding, Lang Chen, Jiatong Dong, Hao Yu, Shen Yan, Hua Wang
{"title":"Modification of NiSe2 Nanoparticles by ZIF-8-Derived NC for Boosting H2O2 Production from Electrochemical Oxygen Reduction in Acidic Media","authors":"Qiaoting Cheng, Hu Ding, Lang Chen, Jiatong Dong, Hao Yu, Shen Yan, Hua Wang","doi":"10.3390/catal14060364","DOIUrl":"https://doi.org/10.3390/catal14060364","url":null,"abstract":"The two-electron oxygen reduction reaction (2e− ORR) has emerged as an attractive alternative for H2O2 production. Developing efficient earth-abundant transition metal electrocatalysts and reaction mechanism exploration for H2O2 production are important but remain challenging. Herein, a nitrogen-doped carbon-coated NiSe2 (NiSe2@NC) electrocatalyst was prepared by successive annealing treatment. Benefiting from the synergistic effect between the NiSe2 nanoparticles and NC, the 2e− ORR activity, selectivity, and stability of NiSe2@NC in 0.1 M HClO4 was greatly enhanced, with the yield of H2O2 being 4.4 times that of the bare NiSe2 nanoparticles. The in situ Raman spectra and density functional theory (DFT) calculation revealed that the presence of NC was beneficial for regulating the electronic state of NiSe2 and optimizing the adsorption free energy of *OOH, which could enhance the adsorption of O2, stabilize the O-O bond, and boost the production of H2O2. This work provides an effective strategy to improve the performance of the transition metal chalcogenide for 2e− ORR to H2O2.","PeriodicalId":9794,"journal":{"name":"Catalysts","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141269824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Non-Oxidative Coupling of Methane Catalyzed by Heterogeneous Catalysts Containing Singly Dispersed Metal Sites 含有单分散金属位点的异质催化剂催化甲烷的非氧化偶联反应
IF 3.9 3区 化学
Catalysts Pub Date : 2024-06-02 DOI: 10.3390/catal14060363
Yuting Li, Jie Zhang
{"title":"Non-Oxidative Coupling of Methane Catalyzed by Heterogeneous Catalysts Containing Singly Dispersed Metal Sites","authors":"Yuting Li, Jie Zhang","doi":"10.3390/catal14060363","DOIUrl":"https://doi.org/10.3390/catal14060363","url":null,"abstract":"Direct upgrading of methane into value-added products is one of the most significant technologies for the effective transformation of hydrocarbon feedstocks in the chemical industry. Both oxidative and non-oxidative methane conversion are broadly useful approaches, though the two reaction pathways are quite distinguished. Oxidative coupling of methane (OCM) has been widely studied, but suffers from the low selectivity to C2 hydrocarbons because of the overoxidation leading to undesired byproducts. Therefore, non-oxidative coupling of methane is a worthy alternative approach to be developed for the efficient, direct utilization of methane. Recently, heterogeneous catalysts comprising singly dispersed metal sites, such as single-atom catalysts (SAC) and surface organometallic catalysts (SOMCat), have been proven to be effectively active for direct coupling of methane to product hydrogen and C2 products. In this context, this review summarizes recent discoveries of these novel catalysts and provides a perspective on promising catalytic processes for methane transformation via non-oxidative coupling.","PeriodicalId":9794,"journal":{"name":"Catalysts","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141273950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation and Comparison of Catalytic Methods to Produce Green CO2-Containing Monomers for Polycarbonates 研究和比较催化方法以生产用于聚碳酸酯的绿色含二氧化碳单体
IF 3.9 3区 化学
Catalysts Pub Date : 2024-06-01 DOI: 10.3390/catal14060362
D. Brüggemann, P. Isbrücker, Dzenna Zukova, Franz Robert Otto Heinrich Schröter, Yen Hoang Le, Reinhard Schomäcker
{"title":"Investigation and Comparison of Catalytic Methods to Produce Green CO2-Containing Monomers for Polycarbonates","authors":"D. Brüggemann, P. Isbrücker, Dzenna Zukova, Franz Robert Otto Heinrich Schröter, Yen Hoang Le, Reinhard Schomäcker","doi":"10.3390/catal14060362","DOIUrl":"https://doi.org/10.3390/catal14060362","url":null,"abstract":"The preparation of CO2-containing polymers with improved degradation properties is still very challenging. An elegant method for preparing these polymers is to use CO2-containing monomers in ring-opening polymerizations (ROP) which are particularly gentle and energy-saving methods. However, cyclic carbonates are required for this which are not readily available. This paper therefore aims to present the optimization and comparison of two synthesis methods to obtain cyclic carbonates for ROP. Within this work, cyclic styrene carbonate was synthesized from readily available raw materials by using a Jacobsen catalyst for the reaction of styrene oxide and carbon dioxide or an organocatalyst for the transesterification of methyl carbonate with 1-phenyl-1,2-ethanediol. The latter performed with 100% selectivity to the desired styrene carbonate, which was succesfully tested in ROP, producing an amorphous thermoplastic polymer with a TG of 185 ∘C.","PeriodicalId":9794,"journal":{"name":"Catalysts","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141280376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient Charge Transfer of p-n Heterojunction UiO-66-NH2/CuFe2O4 Composite for Photocatalytic Hydrogen Production 用于光催化制氢的 p-n 异质结 UiO-66-NH2/CuFe2O4 复合材料的高效电荷转移
IF 3.9 3区 化学
Catalysts Pub Date : 2024-05-24 DOI: 10.3390/catal14060341
M. Shanmugam, Nithish Agamendran, Karthikeyan Sekar
{"title":"Efficient Charge Transfer of p-n Heterojunction UiO-66-NH2/CuFe2O4 Composite for Photocatalytic Hydrogen Production","authors":"M. Shanmugam, Nithish Agamendran, Karthikeyan Sekar","doi":"10.3390/catal14060341","DOIUrl":"https://doi.org/10.3390/catal14060341","url":null,"abstract":"Using a p-n heterojunction is one of the efficient methods to increase charge transfer in photocatalysis applications. So, herein, p-type UiO-66 (NH2) and n-type CuFe2O4 (CFO) are used to form an effective p-n heterojunction. Due to their poor charge separation in their pristine form, both UiO-66 (NH2) and CFO materials cannot produce hydrogen; however, the composite p-n heterojunction formed between these materials makes fast charge separation and so hydrogen is efficiently produced. The optimized catalyst UCFO 25% produces a maximum of 62.5 µmol/g/h hydrogen in an aqueous methanol solution. The formation of a p-n heterojunction is confirmed by Mott–Schottky analysis and optical properties, crystallinity and the local atomic environment of the material was analyzed by various analytical tools like UV-Vis spectroscopy, XRD, and XANES.","PeriodicalId":9794,"journal":{"name":"Catalysts","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141099425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineering the Integration of Titanium and Nickel into Zinc Oxide Nanocomposites through Nanolayered Structures and Nanohybrids to Design Effective Photocatalysts for Purifying Water from Industrial Pollutants 通过纳米层结构和纳米杂化技术将钛和镍整合到氧化锌纳米复合材料中,设计出有效的光催化剂来净化水中的工业污染物
IF 3.9 3区 化学
Catalysts Pub Date : 2024-05-24 DOI: 10.3390/catal14060340
O. Saber, A. Osama, N. Shaalan, Mostafa Osama
{"title":"Engineering the Integration of Titanium and Nickel into Zinc Oxide Nanocomposites through Nanolayered Structures and Nanohybrids to Design Effective Photocatalysts for Purifying Water from Industrial Pollutants","authors":"O. Saber, A. Osama, N. Shaalan, Mostafa Osama","doi":"10.3390/catal14060340","DOIUrl":"https://doi.org/10.3390/catal14060340","url":null,"abstract":"Water pollution is one of the main challenges currently facing scientists around the world because of the rapid growth in industrial activities. On this basis, 2D nanolayered and nanohybrid structures, which are based on a ternary system of nickel–titanium–zinc, are considered favorable sources for designing effective nanocomposites for the photocatalytic degradation of industrial pollutants in a short period of time. These nanocomposites were designed by modifying two-dimensional nanolayers to produce a three-dimensional porous structure of multi-doped Ni/Ti-ZnO nanocomposites. Additionally, another additive was produced by constructing nanohybrids of nickel–titanium–zinc combined with a series of hydrocarbons (n-capric acid, myristic acid, stearic acid, suberic acid, and sebacic acid). Energy-dispersive X-ray spectrometry, X-ray diffraction, scanning electron microscopy, infrared spectroscopy, and thermal analyses confirmed the growth of the nanolayered and nanohybrid materials in addition to the production of nanocomposites. The positive role of the dopants (nickel and titanium) in producing an effective photocatalyst was observed through a significant narrowing of the band gap of zinc oxide to 3.05–3.10 eV. Additionally, the high photocatalytic activity of this nanocomposite enabled the complete removal of colored dye from water after 25 min of UV radiation. In conclusion, this study proposes an unconventional approach for designing new optical nanocomposites for purifying water. Additionally, it suggests a novel supporting method for designing new kinds of nanohybrids based on multi-metals and organic acids.","PeriodicalId":9794,"journal":{"name":"Catalysts","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141101429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信