Enhancing H 2 O 2 Generation Using Activated Carbon Electrocatalyst Cathode: Experimental and Computational Insights on Current, Cathode Design, and Reactor Configuration.

IF 4 3区 化学 Q2 CHEMISTRY, PHYSICAL
Catalysts Pub Date : 2025-02-01 Epub Date: 2025-02-18 DOI:10.3390/catal15020189
Maria Del Mar Cerrillo-Gonzalez, Amir Taqieddin, Stephanie Sarrouf, Nima Sakhaee, Juan Manuel Paz-García, Akram N Alshawabkeh, Muhammad Fahad Ehsan
{"title":"<ArticleTitle xmlns:ns0=\"http://www.w3.org/1998/Math/MathML\">Enhancing <ns0:math> <ns0:msub><ns0:mrow><ns0:mi>H</ns0:mi></ns0:mrow> <ns0:mrow><ns0:mn>2</ns0:mn></ns0:mrow> </ns0:msub> <ns0:msub><ns0:mrow><ns0:mi>O</ns0:mi></ns0:mrow> <ns0:mrow><ns0:mn>2</ns0:mn></ns0:mrow> </ns0:msub> </ns0:math> Generation Using Activated Carbon Electrocatalyst Cathode: Experimental and Computational Insights on Current, Cathode Design, and Reactor Configuration.","authors":"Maria Del Mar Cerrillo-Gonzalez, Amir Taqieddin, Stephanie Sarrouf, Nima Sakhaee, Juan Manuel Paz-García, Akram N Alshawabkeh, Muhammad Fahad Ehsan","doi":"10.3390/catal15020189","DOIUrl":null,"url":null,"abstract":"<p><p>Granular activated carbon (GAC) serves as a cost-efficient electrocatalyst cathode in electrochemical water treatment. This study investigates the impact of current intensity and cathode mesh size on the electrocatalytic generation of reactive oxygen species (ROS), i.e., hydrogen peroxide <math> <mfenced> <mrow> <msub><mrow><mi>H</mi></mrow> <mrow><mn>2</mn></mrow> </msub> <msub><mrow><mi>O</mi></mrow> <mrow><mn>2</mn></mrow> </msub> </mrow> </mfenced> </math> and hydroxyl radicals (•OH), for removing p-nitrophenol (PNP) as a representative contaminant. The findings suggest that these parameters exert a factorial effect on PNP removal, which is statistically endorsed via the analysis of variance. The -20 + 40 mesh GAC exhibited superior electrocatalytic performance due to its optimal balance of porosity and active surface area. Additionally, the reactor configuration was also studied. Employing two reactors in series configuration resulted in a 23% increase in <math> <msub><mrow><mi>H</mi></mrow> <mrow><mn>2</mn></mrow> </msub> <msub><mrow><mi>O</mi></mrow> <mrow><mn>2</mn></mrow> </msub> </math> generation and a 32% enhancement in overall PNP removal compared with the single reactor configuration. This enhancement is attributed to (i) the enhanced electroactive area, (ii) the greater retention time of PNP over the electrocatalyst surface, and (iii) the increased dissolved oxygen and <math> <msub><mrow><mi>H</mi></mrow> <mrow><mn>2</mn></mrow> </msub> <msub><mrow><mi>O</mi></mrow> <mrow><mn>2</mn></mrow> </msub> </math> content in the second reactor, promoting the overall <math> <msub><mrow><mi>H</mi></mrow> <mrow><mn>2</mn></mrow> </msub> <msub><mrow><mi>O</mi></mrow> <mrow><mn>2</mn></mrow> </msub> </math> generation. Numerical simulations were conducted to compute <math> <msub><mrow><mi>H</mi></mrow> <mrow><mn>2</mn></mrow> </msub> <msub><mrow><mi>O</mi></mrow> <mrow><mn>2</mn></mrow> </msub> </math> concentration profiles, providing a detailed representation of the physical, chemical, and electrochemical processes. The model exhibited a high degree of accuracy compared with the experimental measurements, with <math> <msup><mrow><mi>R</mi></mrow> <mrow><mn>2</mn></mrow> </msup> </math> values ranging from ~0.76 to 0.99 and MAE values between ~0.04 and 0.23 mg/L. The simulation results highlight a strong interplay between <math> <msub><mrow><mi>H</mi></mrow> <mrow><mn>2</mn></mrow> </msub> <msub><mrow><mi>O</mi></mrow> <mrow><mn>2</mn></mrow> </msub> </math> generation, its reaction kinetics during PNP removal, and electrode utilization efficiency. These findings emphasize the importance of optimizing the applied current magnitude and reactor operation duration to maximize electrode efficiency and <math> <msub><mrow><mi>H</mi></mrow> <mrow><mn>2</mn></mrow> </msub> <msub><mrow><mi>O</mi></mrow> <mrow><mn>2</mn></mrow> </msub> </math> generation and utilization, while minimizing electrochemical bubble blockage. Overall, this study provides fundamental insights to optimize the electroactive area for enhanced ROS generation toward efficient contaminant removal, supporting sustainable groundwater remediation technologies in the face of emerging pollutants.</p>","PeriodicalId":9794,"journal":{"name":"Catalysts","volume":"15 2","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12456440/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysts","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/catal15020189","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Granular activated carbon (GAC) serves as a cost-efficient electrocatalyst cathode in electrochemical water treatment. This study investigates the impact of current intensity and cathode mesh size on the electrocatalytic generation of reactive oxygen species (ROS), i.e., hydrogen peroxide H 2 O 2 and hydroxyl radicals (•OH), for removing p-nitrophenol (PNP) as a representative contaminant. The findings suggest that these parameters exert a factorial effect on PNP removal, which is statistically endorsed via the analysis of variance. The -20 + 40 mesh GAC exhibited superior electrocatalytic performance due to its optimal balance of porosity and active surface area. Additionally, the reactor configuration was also studied. Employing two reactors in series configuration resulted in a 23% increase in H 2 O 2 generation and a 32% enhancement in overall PNP removal compared with the single reactor configuration. This enhancement is attributed to (i) the enhanced electroactive area, (ii) the greater retention time of PNP over the electrocatalyst surface, and (iii) the increased dissolved oxygen and H 2 O 2 content in the second reactor, promoting the overall H 2 O 2 generation. Numerical simulations were conducted to compute H 2 O 2 concentration profiles, providing a detailed representation of the physical, chemical, and electrochemical processes. The model exhibited a high degree of accuracy compared with the experimental measurements, with R 2 values ranging from ~0.76 to 0.99 and MAE values between ~0.04 and 0.23 mg/L. The simulation results highlight a strong interplay between H 2 O 2 generation, its reaction kinetics during PNP removal, and electrode utilization efficiency. These findings emphasize the importance of optimizing the applied current magnitude and reactor operation duration to maximize electrode efficiency and H 2 O 2 generation and utilization, while minimizing electrochemical bubble blockage. Overall, this study provides fundamental insights to optimize the electroactive area for enhanced ROS generation toward efficient contaminant removal, supporting sustainable groundwater remediation technologies in the face of emerging pollutants.

Abstract Image

Abstract Image

Abstract Image

使用活性炭电催化剂阴极增强h2o2生成:电流,阴极设计和反应器配置的实验和计算见解。
颗粒活性炭(GAC)在电化学水处理中是一种经济高效的电催化剂阴极。本研究考察了电流强度和阴极网尺寸对电催化生成活性氧(ROS)的影响,即过氧化氢h2o2和羟基自由基(•OH),以去除作为代表性污染物的对硝基苯酚(PNP)。研究结果表明,这些参数对PNP去除有析因效应,这是通过方差分析在统计学上得到认可的。-20 + 40目GAC由于其孔隙率和活性表面积的最佳平衡而表现出优异的电催化性能。此外,还对反应器的结构进行了研究。与单反应器配置相比,采用串联配置的两个反应器可使h2o2产出量增加23%,总PNP去除率提高32%。这种增强归因于(i)电活性区域的增强,(ii) PNP在电催化剂表面的停留时间的延长,以及(iii)第二个反应器中溶解氧和h2o2含量的增加,促进了总体h2o2的生成。数值模拟计算了h2o2浓度分布,提供了物理、化学和电化学过程的详细描述。与实验测量值相比,该模型具有较高的精度,r2值在~0.76 ~ 0.99之间,MAE值在~0.04 ~ 0.23 mg/L之间。模拟结果表明,在PNP去除过程中,h2o2的生成、反应动力学和电极利用效率之间存在很强的相互作用。这些发现强调了优化施加电流大小和反应器运行时间的重要性,以最大限度地提高电极效率和h2o2的产生和利用,同时最大限度地减少电化学气泡堵塞。总的来说,本研究为优化电活性区域以增强活性氧生成以有效去除污染物提供了基本见解,支持了面对新出现的污染物的可持续地下水修复技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Catalysts
Catalysts CHEMISTRY, PHYSICAL-
CiteScore
6.80
自引率
7.70%
发文量
1330
审稿时长
3 months
期刊介绍: Catalysts (ISSN 2073-4344) is an international open access journal of catalysts and catalyzed reactions. Catalysts publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信