CFD Letters最新文献

筛选
英文 中文
URANS Prediction of the Hydrodynamic Interactions of Two Ship-like Floating Structures in Regular Waves 规则波浪中两个类船漂浮结构的水动力相互作用的 URANS 预测
CFD Letters Pub Date : 2024-07-21 DOI: 10.37934/cfdl.16.12.117
Fahmy Ardhiansyah, Rudi W Prastianto, Eko Budi Djatmiko, Ketut Suastika
{"title":"URANS Prediction of the Hydrodynamic Interactions of Two Ship-like Floating Structures in Regular Waves","authors":"Fahmy Ardhiansyah, Rudi W Prastianto, Eko Budi Djatmiko, Ketut Suastika","doi":"10.37934/cfdl.16.12.117","DOIUrl":"https://doi.org/10.37934/cfdl.16.12.117","url":null,"abstract":"A side-by-side configuration of floating structures is commonly used in ocean exploration practices, such as offshore vessels for loading and offloading, floating cranes, and offshore floating wind turbines. Computational Fluid Dynamics (CFD) method is current practice for the analysis of hydrodynamic interactions of the side-by-side vessels. The purpose of this study is yo carry out a benchmark study of CFD method applied for the above analysis. URANS CFD method was applied utilizing a k-ε turbulence model and a volume of fluid (VOF) method to capture the free surface. Different ratios of wave length to vessel’s length and different gaps between between the vessels were considered in the study. Simulation results show that the wave length to vessel’s length ratio /L affects significantly the wave pattern around the vessels and inside the gap. For the shorter waves, the gap influences the wave pattern both inside and outside the gap. Further, the pressure distribution on the keel surface of the vessels is asymmetric about the vertical center plane along the vessel, which resulted in roll motion eventhough the vessel is in head seas. Roll motion was observed in all gap variations considered. Amplitude modulation was observed in the heave and pitch motions, while generation of side-band frequency components were observed in the roll motion, which indicate a non-linear fluid-structure interaction.","PeriodicalId":9736,"journal":{"name":"CFD Letters","volume":"91 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141818635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of Activation Energy and Diffusion Thermo an Unsteady MHD Maxwell Fluid Flow over a Porous Vertical Stretched Sheet in the Presence of Thermophoresis and Brownian Motion 活化能和扩散热对存在热泳和布朗运动的多孔垂直拉伸片上的非稳态 MHD 麦克斯韦流体流动的影响
CFD Letters Pub Date : 2024-07-21 DOI: 10.37934/cfdl.16.12.1837
Aruna Ganjikunta, Bhagya Lakshmi Kuntumalla, Ramachandra Reddy Vaddemani
{"title":"Effects of Activation Energy and Diffusion Thermo an Unsteady MHD Maxwell Fluid Flow over a Porous Vertical Stretched Sheet in the Presence of Thermophoresis and Brownian Motion","authors":"Aruna Ganjikunta, Bhagya Lakshmi Kuntumalla, Ramachandra Reddy Vaddemani","doi":"10.37934/cfdl.16.12.1837","DOIUrl":"https://doi.org/10.37934/cfdl.16.12.1837","url":null,"abstract":"This article discusses the effects of Activation energy and Diffusion thermo on an unsteady MHD flow of an electrically conducting Maxwell Nanofluid over a stretching sheet in a porous medium in the presence of thermophoresis and Brownian motion. Using the similarity transformations, the partial differential equations corresponding to the momentum, energy, and concentration equations are transformed into a system of nonlinear ordinary differential equations, which are solved numerically using a RungeKutta fourth-order method along with the shooting technique, and the results obtained for different governing flow parameters are drawn graphically, and their effects on velocity, temperature, and concentration profiles are discussed. The values of the skin friction coefficient, Nusselt number coefficient, and Sherwood number coefficient are presented in the table. A comparison with previously reported data is made, and an excellent agreement is noted. The objective of the present study is to use the Activation energy and Diffusion thermo parameters to increase the concentration of chemical species on the boundary layer and temperature, respectively. The temperature of the fluid increases as the radiation parameter, Brownian motion, thermophoresis, and magnetic parameters increase.","PeriodicalId":9736,"journal":{"name":"CFD Letters","volume":"40 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141818346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MHD Stagnation Point Flow of Micropolar Fluid over a Stretching/ Shrinking Sheet 微极性流体在拉伸/收缩片上的 MHD 停滞点流动
CFD Letters Pub Date : 2024-07-21 DOI: 10.37934/cfdl.16.12.113127
Dachapally Swapna, Gurala Thirupathi, Kamatam Govardhan, Ganji Narender, Santoshi Misra, S. Renuka
{"title":"MHD Stagnation Point Flow of Micropolar Fluid over a Stretching/ Shrinking Sheet","authors":"Dachapally Swapna, Gurala Thirupathi, Kamatam Govardhan, Ganji Narender, Santoshi Misra, S. Renuka","doi":"10.37934/cfdl.16.12.113127","DOIUrl":"https://doi.org/10.37934/cfdl.16.12.113127","url":null,"abstract":"In this article, the stagnation point flow of a micropolar fluid on a stretching/shrinking sheet has been discussed subject to the assumption of velocity slip. Similarity transformation is used to transform the modelled Partial Differential Equations (PDEs) into a system of Ordinary Differential Equations (ODEs). The numerical results have been found by the shooting technique along with Adams Moulton method of order four. The obtained numerical results are compared with the help of Fortran Language program and compared with the earlier published results and excellent validation of the present numerical results has been achieved for the local Nusselt number. Finally, the numerical results are presented with discussion of the effects of different physical parameters.","PeriodicalId":9736,"journal":{"name":"CFD Letters","volume":"19 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141818298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unsteady MHD Walter’s-B Viscoelastic Flow Past a Vertical Porous Plate 流经垂直多孔板的非稳态 MHD 沃尔特斯-B 粘弹流
CFD Letters Pub Date : 2024-07-21 DOI: 10.37934/cfdl.16.12.8596
Veera Reddy Karnati, Sandhaya Akuri, O.Ramakrishna, M. Gayatri, Srinivasa Rao Tagallamudi, Venkata Ramana Reddy Gurrampati
{"title":"Unsteady MHD Walter’s-B Viscoelastic Flow Past a Vertical Porous Plate","authors":"Veera Reddy Karnati, Sandhaya Akuri, O.Ramakrishna, M. Gayatri, Srinivasa Rao Tagallamudi, Venkata Ramana Reddy Gurrampati","doi":"10.37934/cfdl.16.12.8596","DOIUrl":"https://doi.org/10.37934/cfdl.16.12.8596","url":null,"abstract":"The present paper intended to analyse an unsteady MHD Walter’s-B viscoelastic flow past a vertical porous plate embedded in a porous medium in the presence of the radiation and chemical reaction effects. The dimensionless partial differential equations of governing equations of the flow field are solved numerically using closed analytical method. The velocity, temperature and concentration profiles are discussed graphically and discussed qualitatively","PeriodicalId":9736,"journal":{"name":"CFD Letters","volume":"18 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141818301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Inlet Pressure on the Polyurethane Spray Nozzle for Soil Cracking Improvement: Simulations using CFD Method 入口压力对用于改善土壤裂缝的聚氨酯喷嘴的影响:使用 CFD 方法进行模拟
CFD Letters Pub Date : 2024-07-21 DOI: 10.37934/cfdl.16.12.5971
Tasnim Zakepeli, Nik Normunira Mat Hassan, Nur Afzanizam Samiran, Anika Zafiah Mohd Rus, Noraini Marsi, Tuan Noor Hasanah Tuan Ismail, Mohd Ridzuan Mohd Jamir, Siti Nur Azila Khalid, Muhamad Iqbal Aiman Mohd Azman
{"title":"Effect of Inlet Pressure on the Polyurethane Spray Nozzle for Soil Cracking Improvement: Simulations using CFD Method","authors":"Tasnim Zakepeli, Nik Normunira Mat Hassan, Nur Afzanizam Samiran, Anika Zafiah Mohd Rus, Noraini Marsi, Tuan Noor Hasanah Tuan Ismail, Mohd Ridzuan Mohd Jamir, Siti Nur Azila Khalid, Muhamad Iqbal Aiman Mohd Azman","doi":"10.37934/cfdl.16.12.5971","DOIUrl":"https://doi.org/10.37934/cfdl.16.12.5971","url":null,"abstract":"Rigid spray polyurethane (RSPU) was commercially used as an injection in crack walls or soil surfaces to enhance material performance, increase lifetime, and save operating costs. The limitation of the RSPU nozzle was reported as easily clogging when sprayed out to the insulation and crack surface area and the finished product was less aesthetically pleasing. In this study, the RSPU nozzle of flat fan nozzle, 180° angle (Design A), Hollow cone nozzle, 60° angle (Design B), and Full cone nozzle, 90° angle (Design C) were prepared by using the SOLIDWORKS software. The effect of different pressures for RSPU nozzle design at the ranges of 4Mpa, 5MPa, and 6MPa was examined by ANSYS FLUENT software. The velocity of the outer spray nozzle shows a significant increase with increasing inlet pressure of the RSPU nozzle. The results reveal that the highest velocity of RSPU was obtained at the Hollow cone nozzle (Design B) as compared to (Flat fan nozzle) Design A and (Full cone nozzle) Design C at 394.249 m/s at 4MPa, 442.327 m/s at 5MPa and 485.37 m/s at 6MPa, respectively. The distribution droplet area shows the Design B spray formation had wider area coverage at 60° and exhibited that the injection nozzle spray was scatted and uniform at 6MPa. RSPU shows the velocity increased, distribution droplet increased, and output volume spray was decreased at the increasing of injection pressure. Hence, in this study was suggested that the size of RSPU nozzle design must be made at the ranges of 60° to 90° of outlet nozzle to obtain a good RSPU area. In conclusion, design B is the most effective for RSPU nozzle and is useful in injection cracking and insulation materials applications.","PeriodicalId":9736,"journal":{"name":"CFD Letters","volume":"08 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141818494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Heat and Mass Transfer Effects on MHD Mixed Convective Flow of a Vertical Porous Surface in the Presence of Ohmic Heating and Viscous Dissipation 存在欧姆加热和粘性耗散时垂直多孔表面 MHD 混合对流的传热和传质效应
CFD Letters Pub Date : 2024-07-21 DOI: 10.37934/cfdl.16.12.7284
Hari Krishna Yaragani, Anupama Anumolu, Vijaya Lakshmi G, Bindu Pathuri, Reddy G.V.R.
{"title":"Heat and Mass Transfer Effects on MHD Mixed Convective Flow of a Vertical Porous Surface in the Presence of Ohmic Heating and Viscous Dissipation","authors":"Hari Krishna Yaragani, Anupama Anumolu, Vijaya Lakshmi G, Bindu Pathuri, Reddy G.V.R.","doi":"10.37934/cfdl.16.12.7284","DOIUrl":"https://doi.org/10.37934/cfdl.16.12.7284","url":null,"abstract":"The present paper addresses the combined effects of thermal radiation and chemical reaction on steady MHD mixed convective flow of heat and mass transfer past a vertical surface under the influence of Joule and viscous dissipation. The governing system of the partial differential equations is transformed into the dimensionless equations using dimensionless variables. The dimensionless equations are solved numerically using two term perturbation technique and numerical solution as in graphically. The effects of the various parameters entering the problem on the dimensionless velocity, temperature and concentration fields within the boundary layer are discussed qualitatively. The velocity increases with an increase in Grashof number Gr, permeability parameter and solutal Grashof number Gm but decreases in magnetic parameter.","PeriodicalId":9736,"journal":{"name":"CFD Letters","volume":"98 18","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141818549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Li-NMC Temperature Modelling Based on Realistic Internal Resistance 基于真实内阻的锂-NMC 温度建模
CFD Letters Pub Date : 2024-07-21 DOI: 10.37934/cfdl.16.12.140148
Muhammad Fikri Irsyad Mat Razi, Zul Hilmi Che Daud, Zainab Asus, Izhari Izmi Mazali, Anuar Abu Bakar, Mohd Kameil Abdul Hamid
{"title":"Li-NMC Temperature Modelling Based on Realistic Internal Resistance","authors":"Muhammad Fikri Irsyad Mat Razi, Zul Hilmi Che Daud, Zainab Asus, Izhari Izmi Mazali, Anuar Abu Bakar, Mohd Kameil Abdul Hamid","doi":"10.37934/cfdl.16.12.140148","DOIUrl":"https://doi.org/10.37934/cfdl.16.12.140148","url":null,"abstract":"Lithium-ion battery (LIB) produce heat when it is put under charging and discharging process. The heat generated during charging and discharging are directly related to the internal in the battery. This heat generation will cause the battery temperature to rise. The operating temperature for LIB is significantly important because its affect the performance and health of the battery. Gathering battery thermal behavior through experiment is a time consuming, high cost and a fussy process. The process can be made easier through battery thermal modelling. The purpose of this study is to provide a thermal battery model that can predict the battery thermal behavior at wide range of temperature by using realistic internal resistance value from experiment. In this study, a Nickel-Manganese-Cobalt Lithium-ion battery with capacity 40 Ah was discharged with 120 A (3C) and 160 A (4C) current continuously to heat up the battery until a set of targeted temperature achieved. The battery is then discharged with 40 A (1C) pulse current, and the voltage response is measured. The process was repeated until 80°C. From the voltage response data, the internal resistance for the battery was calculated and used as the main input in the thermal model based on heat generation equation to predict the battery temperature. The result shows that the developed thermal model managed to precisely predict battery thermal behaviour with a low average relative error of around 0.634 % to 5.244%. The significance of this study is to provide a battery model that can predict battery thermal behavior precisely at wide range of temperature. This information is important in designing a better battery management system (BMS) to prolong the battery lifetime, slowing degradation rate and avoid safety risk.","PeriodicalId":9736,"journal":{"name":"CFD Letters","volume":"07 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141818496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical Investigation of Thermal Performance for Turbulent Water Flow through Dimpled Pipe 湍流水流过凹陷管道的热性能数值研究
CFD Letters Pub Date : 2024-07-21 DOI: 10.37934/cfdl.16.12.97112
Ansam Adil Mohammed, Mahmoud Sh. Mahmoud, Suha K Jebir, Ahmed F. Khudheyer
{"title":"Numerical Investigation of Thermal Performance for Turbulent Water Flow through Dimpled Pipe","authors":"Ansam Adil Mohammed, Mahmoud Sh. Mahmoud, Suha K Jebir, Ahmed F. Khudheyer","doi":"10.37934/cfdl.16.12.97112","DOIUrl":"https://doi.org/10.37934/cfdl.16.12.97112","url":null,"abstract":"Dimples are tiny indentations on the surfaces of the body that enhance heat transfer and alter fluid flow characteristics on or within the body. Numerical investigations were conducted to analyse the heat transfer and flow characteristics in a cross-combined dimple tube in the range of Reynolds numbers from 6000 to 14000. The finite volume method recognised a novel enhancement model utilising methods for composite-form surfaces. Compared to a smooth tube working similarly, the effects significantly improve the heat transfer index, performance evaluation criteria, and friction factor. A three-dimensional simulation was conducted to clarify the underlying process by which dimples affect thermal performance. The simulation findings suggest that the dimples effectively enhance heat transfer by altering the temperature distribution and increasing the temperature gradient within the central area of the dimple section. A concave surface profile disrupts the flow and prevents the formation of a stable boundary layer, promoting the mixing of hot and cold fluids. Furthermore, the study investigates how geometric characteristics impact thermal and hydraulic efficiencies, emphasising that larger dimples improve overall thermo-hydraulic performance. Specifically, the heat transfer enhancement achieved an average increase of 17.3%, ranging from 18.03% to 38.6%, surpassing that of the traditional smooth tube.","PeriodicalId":9736,"journal":{"name":"CFD Letters","volume":"62 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141817734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Different Shapes of Nanoparticles on Mixed Convective Nanofluid Flow in a Darcy-Forchhiemer Porous Medium 不同形状的纳米颗粒对达西-福尔希默多孔介质中混合对流纳米流体流动的影响
CFD Letters Pub Date : 2024-07-21 DOI: 10.37934/cfdl.16.12.3858
Annapurna T, K.S.R. Sridhar, M Karuna Prasad
{"title":"Effect of Different Shapes of Nanoparticles on Mixed Convective Nanofluid Flow in a Darcy-Forchhiemer Porous Medium","authors":"Annapurna T, K.S.R. Sridhar, M Karuna Prasad","doi":"10.37934/cfdl.16.12.3858","DOIUrl":"https://doi.org/10.37934/cfdl.16.12.3858","url":null,"abstract":"The nanofluid has diverse applications in industries, engineering, and medicine due to its greater thermal characteristics. However, various factors such as the shape and size of nanoparticles, the base fluid, the porous medium, the quadratic drag force, and the viscous dissipation have significant effects on the flow and heat transfer characteristics of nanofluids. Therefore, it is crucial to study the influence of these factors. In this paper, a theoretical investigation is conducted to analyze the mechanisms of thermal conductivities of different shapes of nanoparticles, such as platelet, cylinder, brick and blade on the mixed convective nanofluid flow in a vertical channel saturated with porous medium. Consider ethylene glycol and water as base fluids for the nanoparticles, including copper, aluminum oxide, titanium oxide, silver, and iron oxide. A thin, movable baffle plate of negligible thickness is inserted in the channel and made into double passages. To define the porous matrix, the Darcy-Brinkaman-Forchhiemer model is used, and to define the nanofluid, the Tiwari and Das model is used. Robin boundary conditions are considered for the channel flow. The differential transform method (DTM) is applied to solve non-linear governing equations with inertia, and the perturbation method is applied to solve the problem without inertia. Velocity and temperature cantors are shown graphically using MATLAB and MATHEMATICA. The obtained values by DTM and the perturbation method are well validated and shown graphically. The Nusselt number was evaluated and tabulated for all governing parameters. The objective of this article is to investigate the effect of nonspherical shapes of nanoparticles, the base fluid, the inertial forces of the porous medium, and the buoyancy force on the thermal characteristics of flow and heat transfer of nanofluids. The main findings of this problem are that the optimum velocity and temperature cantor are found for platelet-shaped water-based silver nanofluid.","PeriodicalId":9736,"journal":{"name":"CFD Letters","volume":"85 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141818652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical Analysis and Design for Thermal Efficiency Optimization using Al2O3 Nanofluids in Shell and Tube Heat Exchangers 使用 Al2O3 纳米流体优化管壳式热交换器热效率的数值分析与设计
CFD Letters Pub Date : 2024-07-05 DOI: 10.37934/cfdl.16.11.146160
Mohammed Abbood, Yaser Alaiwi, Ahmad Jundi
{"title":"Numerical Analysis and Design for Thermal Efficiency Optimization using Al2O3 Nanofluids in Shell and Tube Heat Exchangers","authors":"Mohammed Abbood, Yaser Alaiwi, Ahmad Jundi","doi":"10.37934/cfdl.16.11.146160","DOIUrl":"https://doi.org/10.37934/cfdl.16.11.146160","url":null,"abstract":"In this study, the efficacy of aluminum oxide (Al2O3) nanofluids at a 2% concentration for enhancing heat transfer in shell and tube heat exchangers is evaluated. By employing SOLIDWORKS for the innovative design and Computational Fluid Dynamics (CFD) for simulation, an improvement in heat transfer efficiency over traditional hot water systems is identified. Emphasizing the unique properties of Al2O3 nanofluids in augmenting heat transfer rates, the role of advanced CAD and simulation tools in engineering practices is highlighted. Results confirm nanofluids' benefits in improving thermal management systems, indicating their potential to decrease energy consumption and operational costs. Furthermore, the exploration of a novel design for heat exchangers, inspired by but distinct from existing market standards, suggests new avenues for the application of nanofluids in various industrial settings, marking a step towards more energy-efficient technologies.","PeriodicalId":9736,"journal":{"name":"CFD Letters","volume":" 26","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141675714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信