Numerical Investigation of Thermal Performance for Turbulent Water Flow through Dimpled Pipe

Q2 Mathematics
Ansam Adil Mohammed, Mahmoud Sh. Mahmoud, Suha K Jebir, Ahmed F. Khudheyer
{"title":"Numerical Investigation of Thermal Performance for Turbulent Water Flow through Dimpled Pipe","authors":"Ansam Adil Mohammed, Mahmoud Sh. Mahmoud, Suha K Jebir, Ahmed F. Khudheyer","doi":"10.37934/cfdl.16.12.97112","DOIUrl":null,"url":null,"abstract":"Dimples are tiny indentations on the surfaces of the body that enhance heat transfer and alter fluid flow characteristics on or within the body. Numerical investigations were conducted to analyse the heat transfer and flow characteristics in a cross-combined dimple tube in the range of Reynolds numbers from 6000 to 14000. The finite volume method recognised a novel enhancement model utilising methods for composite-form surfaces. Compared to a smooth tube working similarly, the effects significantly improve the heat transfer index, performance evaluation criteria, and friction factor. A three-dimensional simulation was conducted to clarify the underlying process by which dimples affect thermal performance. The simulation findings suggest that the dimples effectively enhance heat transfer by altering the temperature distribution and increasing the temperature gradient within the central area of the dimple section. A concave surface profile disrupts the flow and prevents the formation of a stable boundary layer, promoting the mixing of hot and cold fluids. Furthermore, the study investigates how geometric characteristics impact thermal and hydraulic efficiencies, emphasising that larger dimples improve overall thermo-hydraulic performance. Specifically, the heat transfer enhancement achieved an average increase of 17.3%, ranging from 18.03% to 38.6%, surpassing that of the traditional smooth tube.","PeriodicalId":9736,"journal":{"name":"CFD Letters","volume":"62 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CFD Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37934/cfdl.16.12.97112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Dimples are tiny indentations on the surfaces of the body that enhance heat transfer and alter fluid flow characteristics on or within the body. Numerical investigations were conducted to analyse the heat transfer and flow characteristics in a cross-combined dimple tube in the range of Reynolds numbers from 6000 to 14000. The finite volume method recognised a novel enhancement model utilising methods for composite-form surfaces. Compared to a smooth tube working similarly, the effects significantly improve the heat transfer index, performance evaluation criteria, and friction factor. A three-dimensional simulation was conducted to clarify the underlying process by which dimples affect thermal performance. The simulation findings suggest that the dimples effectively enhance heat transfer by altering the temperature distribution and increasing the temperature gradient within the central area of the dimple section. A concave surface profile disrupts the flow and prevents the formation of a stable boundary layer, promoting the mixing of hot and cold fluids. Furthermore, the study investigates how geometric characteristics impact thermal and hydraulic efficiencies, emphasising that larger dimples improve overall thermo-hydraulic performance. Specifically, the heat transfer enhancement achieved an average increase of 17.3%, ranging from 18.03% to 38.6%, surpassing that of the traditional smooth tube.
湍流水流过凹陷管道的热性能数值研究
凹痕是管体表面的微小凹痕,可增强热传递并改变管体上或管体内的流体流动特性。我们进行了数值研究,分析了雷诺数在 6000 到 14000 之间的交叉组合凹陷管中的传热和流动特性。有限体积法利用复合形式表面的方法识别了一个新的增强模型。与工作方式类似的光滑管相比,其效果明显改善了传热指数、性能评估标准和摩擦系数。我们进行了三维模拟,以阐明凹点影响热性能的基本过程。模拟结果表明,凹痕通过改变温度分布和增加凹痕部分中心区域的温度梯度,有效地提高了传热效果。凹面轮廓会扰乱流动,阻止形成稳定的边界层,促进冷热流体的混合。此外,该研究还探讨了几何特征如何影响热效率和液压效率,并强调较大的凹陷可改善整体热液压性能。具体而言,传热性能平均提高了 17.3%,从 18.03% 到 38.6% 不等,超过了传统的光滑管。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CFD Letters
CFD Letters Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
3.40
自引率
0.00%
发文量
76
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信