Cell Discovery最新文献

筛选
英文 中文
Dual-targeting strategy enables extremely potent and broad inhibition of emerging MERS-related coronaviruses. 双重靶向策略能够对新出现的中东呼吸综合征相关冠状病毒进行极其有效和广泛的抑制。
IF 12.5 1区 生物学
Cell Discovery Pub Date : 2025-08-26 DOI: 10.1038/s41421-025-00827-8
Fanke Jiao, Suya Jin, Qian Wang, Wei Xu, Xinling Wang, Fei Sun, Lu Lu, Shibo Jiang, Yun Zhu, Shuai Xia
{"title":"Dual-targeting strategy enables extremely potent and broad inhibition of emerging MERS-related coronaviruses.","authors":"Fanke Jiao, Suya Jin, Qian Wang, Wei Xu, Xinling Wang, Fei Sun, Lu Lu, Shibo Jiang, Yun Zhu, Shuai Xia","doi":"10.1038/s41421-025-00827-8","DOIUrl":"10.1038/s41421-025-00827-8","url":null,"abstract":"","PeriodicalId":9674,"journal":{"name":"Cell Discovery","volume":"11 1","pages":"70"},"PeriodicalIF":12.5,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12378456/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144944252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A phosphorylation switch in the Mediator MED15 controls cellular senescence and cognitive decline. 介质MED15中的磷酸化开关控制细胞衰老和认知能力下降。
IF 12.5 1区 生物学
Cell Discovery Pub Date : 2025-08-19 DOI: 10.1038/s41421-025-00820-1
Haozheng Li, Yuanming Zheng, Chunlei Yuan, Jiayi Wang, Xiaying Zhao, Ming Yang, Defei Xiong, Yenan Yang, Yunpeng Dai, Yiming Gao, Yuqi Wang, Lei Xue, Gang Wang
{"title":"A phosphorylation switch in the Mediator MED15 controls cellular senescence and cognitive decline.","authors":"Haozheng Li, Yuanming Zheng, Chunlei Yuan, Jiayi Wang, Xiaying Zhao, Ming Yang, Defei Xiong, Yenan Yang, Yunpeng Dai, Yiming Gao, Yuqi Wang, Lei Xue, Gang Wang","doi":"10.1038/s41421-025-00820-1","DOIUrl":"10.1038/s41421-025-00820-1","url":null,"abstract":"<p><p>A hallmark of aging is chronic systemic inflammation, which is exacerbated by the hypersecretory aging phenotype known as the senescence-associated secretory phenotype (SASP). How the SASP is initiated to accelerate tissue inflammation and aging is an outstanding question in aging biology. Here, we showed that phosphorylation of the Mediator subunit MED15 at T603 is able to control the SASP and aging. Transforming growth factor-β selectively induces CDK1-mediated MED15 T603 phosphorylation to control SASP gene expression. The MED15 T603 dephosphorylated mutant (T603A) inhibits the SASP and cell senescence, whereas the T603 phosphorylation-mimicking mutant (T603D) has the opposite effect. Mechanistically, forkhead box protein A1 preferentially binds to unphosphorylated but not phosphorylated MED15 at T603 to suppress SASP gene expression. Notably, aging mice harboring dephosphorylated mutation in this phosphosite exhibit improved learning and memory through the attenuation of the SASP across tissues. Overall, our study indicates that MED15 T603 phosphorylation serves as a control switch for SASP production, which underlies tissue aging and cognitive decline and provides a novel target for age-related pathogenesis.</p>","PeriodicalId":9674,"journal":{"name":"Cell Discovery","volume":"11 1","pages":"69"},"PeriodicalIF":12.5,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12365249/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144871675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Breast cancer induces CD62L+ Kupffer cells via DMBT1 to promote neutrophil extracellular trap formation and liver metastasis. 乳腺癌通过DMBT1诱导CD62L+ Kupffer细胞,促进中性粒细胞胞外陷阱形成和肝脏转移。
IF 12.5 1区 生物学
Cell Discovery Pub Date : 2025-08-12 DOI: 10.1038/s41421-025-00819-8
Pu Tian, Qiuyao Wu, Dasa He, Wenjing Zhao, Lichao Luo, Zhenchang Jia, Wenqian Luo, Xianzhe Lv, Yanan Liu, Yuan Wang, Qian Wang, Peiyuan Zhang, Yajun Liang, Qifeng Yang, Guohong Hu
{"title":"Breast cancer induces CD62L<sup>+</sup> Kupffer cells via DMBT1 to promote neutrophil extracellular trap formation and liver metastasis.","authors":"Pu Tian, Qiuyao Wu, Dasa He, Wenjing Zhao, Lichao Luo, Zhenchang Jia, Wenqian Luo, Xianzhe Lv, Yanan Liu, Yuan Wang, Qian Wang, Peiyuan Zhang, Yajun Liang, Qifeng Yang, Guohong Hu","doi":"10.1038/s41421-025-00819-8","DOIUrl":"10.1038/s41421-025-00819-8","url":null,"abstract":"<p><p>The liver is a major target organ for breast cancer metastasis, while the regulatory mechanism of liver colonization by breast cancer remains largely unclear. Neutrophils are known to play important roles in metastatic colonization of cancer cells by the formation of neutrophil extracellular traps (NETs). Here we show the role and mechanism of a subpopulation of Kupffer cells (KCs), the liver resident macrophages, in mediating tumoral induction of NETs and liver metastasis. NETs are activated more abundantly in liver metastases of breast cancer, as compared to metastases to other organs and primary tumors. Liver-tropic tumor cells induce CD62L-expressing KCs by a secretory protein DMBT1, and CD62L<sup>+</sup> KCs activate neutrophils for NETosis via the chemokine CCL8. Inhibition of CCL8 or its receptor on neutrophils, CCR1, impairs NETosis and metastasis. In addition, we identified a KC membrane protein MUC1 that binds to DMBT1 and subsequently activates NF-κB signaling in KCs, leading to CCL8 and CD62L expression. KCs with MUC1 inhibition effectively suppress liver metastasis. Furthermore, a DMBT1 neutralizing antibody was developed with the promise to inhibit tumor-KC interaction and treat metastatic cancer. In conclusion, our work reveals a KC subset that accounts for the liver tropism of breast cancer cells and NETs, and provides potential strategies in metastasis treatment.</p>","PeriodicalId":9674,"journal":{"name":"Cell Discovery","volume":"11 1","pages":"68"},"PeriodicalIF":12.5,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12343785/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144834086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AR to GR switch modulates differential TDO2-Kyn-AhR signalling to promote the survival and recurrence of treatment-induced dormant cells in prostate cancer. AR - GR开关调节不同的TDO2-Kyn-AhR信号传导,促进前列腺癌治疗诱导的休眠细胞的存活和复发。
IF 12.5 1区 生物学
Cell Discovery Pub Date : 2025-08-05 DOI: 10.1038/s41421-025-00817-w
Sangsang Li, Yifan Zhang, Maoxing Luo, Weiwei Zhou, Yitong Chen, Dinglan Wu, Qiang Wei, Yan Chang, Hailiang Hu
{"title":"AR to GR switch modulates differential TDO2-Kyn-AhR signalling to promote the survival and recurrence of treatment-induced dormant cells in prostate cancer.","authors":"Sangsang Li, Yifan Zhang, Maoxing Luo, Weiwei Zhou, Yitong Chen, Dinglan Wu, Qiang Wei, Yan Chang, Hailiang Hu","doi":"10.1038/s41421-025-00817-w","DOIUrl":"10.1038/s41421-025-00817-w","url":null,"abstract":"<p><p>Cancer cells can be induced to dormancy initially by specific cancer therapies, but can be reactivated for subsequent relapse as therapy-resistant cancer cells. Although the treatment-induced dormancy-to-reactivation switch is an important process in tumour spread and recurrence, little is known about the underlying molecular mechanisms, particularly the metabolic underpinnings. In this study, we demonstrated that the tryptophan catabolism-related tryptophan 2,3-dioxygenase (TDO2) -kynurenine (Kyn) -aryl hydrocarbon receptor (AhR) signalling axis was responsible for both sustaining the survival of dormant prostate cancer cells induced by androgen deprivation therapy (ADT) and promoting the reactivation of dormant cells and their recurrent outgrowth, which facilitated the development of therapeutic resistance by allowing the dormancy-to-reactivation switch. Mechanistically, we found that ADT upregulated the expression of TDO2 to produce Kyn, which activated AhR and maintained the survival of ADT-induced dormant cells. Interestingly, the switch of transcription factors from the androgen receptor (AR) to the glucocorticoid receptor (GR) modulated the persistent expression of TDO2 and promoted the reactivation of dormant cells through the same TDO2-Kyn-AhR signalling axis. Additionally, tumour recurrence following ADT was delayed by pharmacological suppression of TDO2-Kyn-AhR signalling with a TDO2 inhibitor or an AhR inhibitor. In summary, we describe a signalling circuit mediated by tryptophan metabolism for regulating tumour cell dormancy and recurrence and propose TDO2 as a new target for the treatment of androgen-sensitive prostate cancer patients in combination with ADT.</p>","PeriodicalId":9674,"journal":{"name":"Cell Discovery","volume":"11 1","pages":"67"},"PeriodicalIF":12.5,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12322048/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144783602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The second messenger c-di-AMP controls natural competence via ComFB signaling protein. 第二信使c-di-AMP通过ComFB信号蛋白控制自然能力。
IF 12.5 1区 生物学
Cell Discovery Pub Date : 2025-08-01 DOI: 10.1038/s41421-025-00816-x
Sherihan Samir, Sofía Doello, Andreas M Enkerlin, Erik Zimmer, Michael Haffner, Teresa Müller, Lisa Dengler, Stilianos P Lambidis, Shamphavi Sivabalasarma, Sonja-Verena Albers, Khaled A Selim
{"title":"The second messenger c-di-AMP controls natural competence via ComFB signaling protein.","authors":"Sherihan Samir, Sofía Doello, Andreas M Enkerlin, Erik Zimmer, Michael Haffner, Teresa Müller, Lisa Dengler, Stilianos P Lambidis, Shamphavi Sivabalasarma, Sonja-Verena Albers, Khaled A Selim","doi":"10.1038/s41421-025-00816-x","DOIUrl":"10.1038/s41421-025-00816-x","url":null,"abstract":"","PeriodicalId":9674,"journal":{"name":"Cell Discovery","volume":"11 1","pages":"65"},"PeriodicalIF":12.5,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12313861/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144759200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Common signatures of neutrophils in diverse disease conditions. 中性粒细胞在不同疾病条件下的共同特征。
IF 12.5 1区 生物学
Cell Discovery Pub Date : 2025-08-01 DOI: 10.1038/s41421-025-00818-9
Di Wu, Ying Cao, Hongjie Chen, Minghao Du, Tingting Wang, Jiarui Zhao, Mengyuan Li, Wenjing Wu, Huixuan Zhang, Ence Yang, Jing Yang, Jian Chen
{"title":"Common signatures of neutrophils in diverse disease conditions.","authors":"Di Wu, Ying Cao, Hongjie Chen, Minghao Du, Tingting Wang, Jiarui Zhao, Mengyuan Li, Wenjing Wu, Huixuan Zhang, Ence Yang, Jing Yang, Jian Chen","doi":"10.1038/s41421-025-00818-9","DOIUrl":"10.1038/s41421-025-00818-9","url":null,"abstract":"","PeriodicalId":9674,"journal":{"name":"Cell Discovery","volume":"11 1","pages":"66"},"PeriodicalIF":12.5,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12313967/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144759199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural basis for the activity regulation of Medicago calcium channel CNGC15. 紫花苜蓿钙通道CNGC15活性调控的结构基础。
IF 12.5 1区 生物学
Cell Discovery Pub Date : 2025-07-22 DOI: 10.1038/s41421-025-00815-y
Xia Xu, Qinrui Wang, Tengfei Sun, Heyi Gao, Ruichu Gu, Junzhao Yang, Jiaqi Zhou, Peng Fu, Han Wen, Guanghui Yang
{"title":"Structural basis for the activity regulation of Medicago calcium channel CNGC15.","authors":"Xia Xu, Qinrui Wang, Tengfei Sun, Heyi Gao, Ruichu Gu, Junzhao Yang, Jiaqi Zhou, Peng Fu, Han Wen, Guanghui Yang","doi":"10.1038/s41421-025-00815-y","DOIUrl":"10.1038/s41421-025-00815-y","url":null,"abstract":"<p><p>Cyclic nucleotide-gated ion channels (CNGCs) in plants mediate Ca<sup>2+</sup> influx in response to environmental changes. Among numerous plant CNGCs, Medicago truncatula CNGC15a/b/c (MtCNGC15) is localized to the nuclear envelope. The opening and closing cycle of MtCNGC15 is tightly associated with the Ca<sup>2+</sup> oscillation in symbiosis. However, the molecular mechanism underlying MtCNGC15 activity regulation remains unclear. In this study, we present the structures of MtCNGC15 in its apo form and in the presence of CaM. The apo MtCNGC15b exhibits a flexible cytoplasmic domain (CPD), whereas binding of the MtCaM inhibits Ca<sup>2+</sup> currents and stabilizes the highly dynamic CPD. Furthermore, the activity of MtCNGC15b seems to be independent of cGMP. The hypothetical binding pocket for cGMP is occupied by an arginine residue. These findings elucidate the structural basis for the activity regulation of nuclear localized MtCNGC15.</p>","PeriodicalId":9674,"journal":{"name":"Cell Discovery","volume":"11 1","pages":"63"},"PeriodicalIF":12.5,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12284214/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144689018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inhaled bispecific single-domain antibody BM219 for mild-to-moderate COVID-19: a double-blind, randomized, placebo-controlled phase 2 trial. 吸入双特异性单域抗体BM219治疗轻中度COVID-19:一项双盲、随机、安慰剂对照的2期试验
IF 13 1区 生物学
Cell Discovery Pub Date : 2025-07-17 DOI: 10.1038/s41421-025-00813-0
Yanling Wu, Yuan Li, Ping Zhang, Siwei Guo, Fang Yuan, Vivian Liu, Ting Yu, Feng Lin, Nan Yang, Chao Tu, Hongzhou Lu, Tianlei Ying, Xin Li
{"title":"Inhaled bispecific single-domain antibody BM219 for mild-to-moderate COVID-19: a double-blind, randomized, placebo-controlled phase 2 trial.","authors":"Yanling Wu, Yuan Li, Ping Zhang, Siwei Guo, Fang Yuan, Vivian Liu, Ting Yu, Feng Lin, Nan Yang, Chao Tu, Hongzhou Lu, Tianlei Ying, Xin Li","doi":"10.1038/s41421-025-00813-0","DOIUrl":"10.1038/s41421-025-00813-0","url":null,"abstract":"","PeriodicalId":9674,"journal":{"name":"Cell Discovery","volume":"11 1","pages":"64"},"PeriodicalIF":13.0,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12271308/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144658534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The induced-fit and catalytic mechanisms of human G6PC1. 人G6PC1的诱导拟合及催化机制。
IF 13 1区 生物学
Cell Discovery Pub Date : 2025-07-15 DOI: 10.1038/s41421-025-00814-z
Qihao Chen, Yuhang Wang, Renjie Li, Qinru Bai, Yan Zhao
{"title":"The induced-fit and catalytic mechanisms of human G6PC1.","authors":"Qihao Chen, Yuhang Wang, Renjie Li, Qinru Bai, Yan Zhao","doi":"10.1038/s41421-025-00814-z","DOIUrl":"10.1038/s41421-025-00814-z","url":null,"abstract":"<p><p>Human glucose-6-phosphatase catalytic subunit 1 (hG6PC1) is a key enzyme in glucose metabolism, governing the final common step of gluconeogenesis and glycogenolysis, and directly regulating energy homeostasis. Aberrant mutations in G6PC1 directly cause glycogen storage disease type 1a, which is characterized by chronic hypoglycemia and glycogen accumulation. Additionally, abnormal G6PC1 function leads to increased fasting blood glucose. Consequently, it is a critical target for treating glucose metabolism disorders. In this study, we determine the cryo-EM structures of G6PC1 in both the partially open and fully open states, in either the apo form or in complex with the substrates G6P or F6P and the product phosphate. These structures offer distinct insights into the mechanism of hydrolysis and induced-fit, providing a structural foundation for the diagnostic analysis of disease-causing mutations in G6PC1. Moreover, we propose a potential mechanism by which phosphatidylserine regulates G6PC1 activity, providing a novel perspective on its role and implications.</p>","PeriodicalId":9674,"journal":{"name":"Cell Discovery","volume":"11 1","pages":"62"},"PeriodicalIF":13.0,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12264158/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144641903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Decoding and reprogramming of the biosynthetic networks of mushroom-derived bioactive type II ganoderic acids in yeast. 酵母中蘑菇衍生的生物活性型灵芝酸生物合成网络的解码和重编程。
IF 13 1区 生物学
Cell Discovery Pub Date : 2025-07-08 DOI: 10.1038/s41421-025-00812-1
Qin Wang, Ye Li, Shunhan Zhang, Wei Yuan, Zeqian Du, Ting Shi, Zhao Chang, Xingye Zhai, Yinhua Lu, Meng Wang, Juan Guo, Jian-Jiang Zhong, Han Xiao
{"title":"Decoding and reprogramming of the biosynthetic networks of mushroom-derived bioactive type II ganoderic acids in yeast.","authors":"Qin Wang, Ye Li, Shunhan Zhang, Wei Yuan, Zeqian Du, Ting Shi, Zhao Chang, Xingye Zhai, Yinhua Lu, Meng Wang, Juan Guo, Jian-Jiang Zhong, Han Xiao","doi":"10.1038/s41421-025-00812-1","DOIUrl":"10.1038/s41421-025-00812-1","url":null,"abstract":"<p><p>Mushroom's specialized secondary metabolites possess important pharmacological activities, but their biosynthetic pathway elucidation is extremely challenging, not to mention reprogramming of their biosynthetic networks to target metabolites. By taking Ganoderma lucidum, a famous traditional medicinal mushroom, as a lead example, here we decoded the biosynthetic networks of type II ganoderic acids (TIIGAs), a group of its main bioactive metabolites by studying the coordinated gene expression in G. lucidum, identifying endogenous or heterologous enzymes capable of C22 hydroxylation, configuration conversion of C3 hydroxyl group, and acetylation on C3, C15 and C22 hydroxyl groups. Notably, we revealed the catalytic mechanism of the C22 hydroxylase CYP512W6, and an unexpected bifunctional acetyltransferase GlAT that is required to transfer acetyl groups to C15 and C22. Using a fluorescence-guided integration method, we achieved efficient biosynthesis of significant TIIGAs applicable to industrial fermentation. After introducing all the identified enzymes to baker's yeast, we observed that biosynthesis of downstream TIIGAs was severely impeded, and dredged the metabolic block by temporally regulating the expression of acetyltransferases. By reprogramming of the biosynthetic networks of TIIGAs, we were able to produce over 30 TIIGAs, exhibiting 1-4 orders of magnitude higher titers or efficiencies than those from farmed mushrooms. The work enables the access to valuable TIIGAs, facilitates their widespread application, and sheds light on research of other mushroom products.</p>","PeriodicalId":9674,"journal":{"name":"Cell Discovery","volume":"11 1","pages":"61"},"PeriodicalIF":13.0,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12234687/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144583199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信