Structural basis for the activity regulation of Medicago calcium channel CNGC15.

IF 12.5 1区 生物学 Q1 CELL BIOLOGY
Xia Xu, Qinrui Wang, Tengfei Sun, Heyi Gao, Ruichu Gu, Junzhao Yang, Jiaqi Zhou, Peng Fu, Han Wen, Guanghui Yang
{"title":"Structural basis for the activity regulation of Medicago calcium channel CNGC15.","authors":"Xia Xu, Qinrui Wang, Tengfei Sun, Heyi Gao, Ruichu Gu, Junzhao Yang, Jiaqi Zhou, Peng Fu, Han Wen, Guanghui Yang","doi":"10.1038/s41421-025-00815-y","DOIUrl":null,"url":null,"abstract":"<p><p>Cyclic nucleotide-gated ion channels (CNGCs) in plants mediate Ca<sup>2+</sup> influx in response to environmental changes. Among numerous plant CNGCs, Medicago truncatula CNGC15a/b/c (MtCNGC15) is localized to the nuclear envelope. The opening and closing cycle of MtCNGC15 is tightly associated with the Ca<sup>2+</sup> oscillation in symbiosis. However, the molecular mechanism underlying MtCNGC15 activity regulation remains unclear. In this study, we present the structures of MtCNGC15 in its apo form and in the presence of CaM. The apo MtCNGC15b exhibits a flexible cytoplasmic domain (CPD), whereas binding of the MtCaM inhibits Ca<sup>2+</sup> currents and stabilizes the highly dynamic CPD. Furthermore, the activity of MtCNGC15b seems to be independent of cGMP. The hypothetical binding pocket for cGMP is occupied by an arginine residue. These findings elucidate the structural basis for the activity regulation of nuclear localized MtCNGC15.</p>","PeriodicalId":9674,"journal":{"name":"Cell Discovery","volume":"11 1","pages":"63"},"PeriodicalIF":12.5000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12284214/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Discovery","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41421-025-00815-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cyclic nucleotide-gated ion channels (CNGCs) in plants mediate Ca2+ influx in response to environmental changes. Among numerous plant CNGCs, Medicago truncatula CNGC15a/b/c (MtCNGC15) is localized to the nuclear envelope. The opening and closing cycle of MtCNGC15 is tightly associated with the Ca2+ oscillation in symbiosis. However, the molecular mechanism underlying MtCNGC15 activity regulation remains unclear. In this study, we present the structures of MtCNGC15 in its apo form and in the presence of CaM. The apo MtCNGC15b exhibits a flexible cytoplasmic domain (CPD), whereas binding of the MtCaM inhibits Ca2+ currents and stabilizes the highly dynamic CPD. Furthermore, the activity of MtCNGC15b seems to be independent of cGMP. The hypothetical binding pocket for cGMP is occupied by an arginine residue. These findings elucidate the structural basis for the activity regulation of nuclear localized MtCNGC15.

紫花苜蓿钙通道CNGC15活性调控的结构基础。
植物中的环核苷酸门控离子通道(CNGCs)介导Ca2+内流以响应环境变化。在众多植物cngc中,Medicago truncatula CNGC15a/b/c (MtCNGC15)定位于核膜。MtCNGC15的开启和关闭周期与共生中的Ca2+振荡密切相关。然而,MtCNGC15活性调控的分子机制尚不清楚。在这项研究中,我们展示了MtCNGC15在载脂蛋白形式和CaM存在下的结构。载子MtCNGC15b表现出灵活的细胞质结构域(CPD),而MtCaM的结合抑制Ca2+电流并稳定高动态的CPD。此外,MtCNGC15b的活性似乎独立于cGMP。假设的cGMP结合袋被精氨酸残基占据。这些发现阐明了核定位MtCNGC15活性调控的结构基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Discovery
Cell Discovery Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
24.20
自引率
0.60%
发文量
120
审稿时长
20 weeks
期刊介绍: Cell Discovery is a cutting-edge, open access journal published by Springer Nature in collaboration with the Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences (CAS). Our aim is to provide a dynamic and accessible platform for scientists to showcase their exceptional original research. Cell Discovery covers a wide range of topics within the fields of molecular and cell biology. We eagerly publish results of great significance and that are of broad interest to the scientific community. With an international authorship and a focus on basic life sciences, our journal is a valued member of Springer Nature's prestigious Molecular Cell Biology journals. In summary, Cell Discovery offers a fresh approach to scholarly publishing, enabling scientists from around the world to share their exceptional findings in molecular and cell biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信