{"title":"Exosomes enriched by miR-429-3p derived from ITGB1 modified Telocytes alleviates hypoxia-induced pulmonary arterial hypertension through regulating Rac1 expression.","authors":"Ruixue Qi, Yong Zhang, Furong Yan","doi":"10.1007/s10565-024-09879-0","DOIUrl":"10.1007/s10565-024-09879-0","url":null,"abstract":"<p><strong>Background: </strong>Recent studies have emphasized the critical role of Telocytes (TCs)-derived exosomes in organ tissue injury and repair. Our previous research showed a significant increase in ITGB1 within TCs. Pulmonary Arterial Hypertension (PAH) is marked by a loss of microvessel regeneration and progressive vascular remodeling. This study aims to investigate whether exosomes derived from ITGB1-modified TCs (ITGB1-Exo) could mitigate PAH.</p><p><strong>Methods: </strong>We analyzed differentially expressed microRNAs (DEmiRs) in TCs using Affymetrix Genechip miRNA 4.0 arrays. Exosomes isolated from TC culture supernatants were verified through transmission electron microscopy and Nanoparticle Tracking Analysis. The impact of miR-429-3p-enriched exosomes (Exo-ITGB1) on hypoxia-induced pulmonary arterial smooth muscle cells (PASMCs) was evaluated using CCK-8, transwell assay, and inflammatory factor analysis. A four-week hypoxia-induced mouse model of PAH was constructed, and H&E staining, along with Immunofluorescence staining, were employed to assess PAH progression.</p><p><strong>Results: </strong>Forty-five miRNAs exhibited significant differential expression in TCs following ITGB1 knockdown. Mus-miR-429-3p, significantly upregulated in ITGB1-overexpressing TCs and in ITGB1-modified TC-derived exosomes, was selected for further investigation. Exo-ITGB1 notably inhibited the migration, proliferation, and inflammation of PASMCs by targeting Rac1. Overexpressing Rac1 partly counteracted Exo-ITGB1's effects. In vivo administration of Exo-ITGB1 effectively reduced pulmonary vascular remodeling and inflammation.</p><p><strong>Conclusions: </strong>Our findings reveal that ITGB1-modified TC-derived exosomes exert anti-inflammatory effects and reverse vascular remodeling through the miR-429-3p/Rac1 axis. This provides potential therapeutic strategies for PAH treatment.</p>","PeriodicalId":9672,"journal":{"name":"Cell Biology and Toxicology","volume":"40 1","pages":"32"},"PeriodicalIF":6.1,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11106170/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141065142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"SIRT1 restores mitochondrial structure and function in rats by activating SIRT3 after cerebral ischemia/reperfusion injury.","authors":"Manli Chen, Ji Liu, Wenwen Wu, Ting Guo, Jinjin Yuan, Zhiyun Wu, Zhijian Zheng, Zijun Zhao, Qiang Lin, Nan Liu, Hongbin Chen","doi":"10.1007/s10565-024-09869-2","DOIUrl":"10.1007/s10565-024-09869-2","url":null,"abstract":"<p><p>Mitochondrial dysfunction contributes to cerebral ischemia-reperfusion (CI/R) injury, which can be ameliorated by Sirtuin-3 (SIRT3). Under stress conditions, the SIRT3-promoted mitochondrial functional recovery depends on both its activity and expression. However, the approach to enhance SIRT3 activity after CI/R injury remains unelucidated. In this study, Sprague-Dawley (SD) rats were intracranially injected with either adeno-associated viral Sirtuin-1 (AAV-SIRT1) or AAV-sh_SIRT1 before undergoing transient middle cerebral artery occlusion (tMCAO). Primary cortical neurons were cultured and transfected with lentiviral SIRT1 (LV-SIRT1) and LV-sh_SIRT1 respectively before oxygen-glucose deprivation/reoxygenation (OGD/R). Afterwards, rats and neurons were respectively treated with a selective SIRT3 inhibitor, 3-(1H-1,2,3-triazol-4-yl) pyridine (3-TYP). The expression, function, and related mechanism of SIRT1 were investigated by Western Blot, flow cytometry, immunofluorescence staining, etc. After CI/R injury, SIRT1 expression decreased in vivo and in vitro. The simulation and immune-analyses reported strong interaction between SIRT1 and SIRT3 in the cerebral mitochondria before and after CI/R. SIRT1 overexpression enhanced SIRT3 activity by increasing the deacetylation of SIRT3, which ameliorated CI/R-induced cerebral infarction, neuronal apoptosis, oxidative stress, neurological and motor dysfunction, and mitochondrial respiratory chain dysfunction, promoted mitochondrial biogenesis, and retained mitochondrial integrity and mitochondrial morphology. Meanwhile, SIRT1 overexpression alleviated OGD/R-induced neuronal death and mitochondrial bioenergetic deficits. These effects were reversed by AAV-sh_SIRT1 and the neuroprotective effects of SIRT1 were partially offset by 3-TYP. These results suggest that SIRT1 restores the structure and function of mitochondria by activating SIRT3, offering neuroprotection against CI/R injury, which signifies a potential approach for the clinical management of cerebral ischemia.</p>","PeriodicalId":9672,"journal":{"name":"Cell Biology and Toxicology","volume":"40 1","pages":"31"},"PeriodicalIF":5.3,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11106166/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141065183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiayu Chen, Lei Li, Yongpu Feng, Yating Zhao, Fengyuan Sun, Xianzhu Zhou, Du Yiqi, Zhaoshen Li, Fanyang Kong, Xiangyu Kong
{"title":"MKLN1-AS promotes pancreatic cancer progression as a crucial downstream mediator of HIF-1α through miR-185-5p/TEAD1 pathway.","authors":"Jiayu Chen, Lei Li, Yongpu Feng, Yating Zhao, Fengyuan Sun, Xianzhu Zhou, Du Yiqi, Zhaoshen Li, Fanyang Kong, Xiangyu Kong","doi":"10.1007/s10565-024-09863-8","DOIUrl":"10.1007/s10565-024-09863-8","url":null,"abstract":"<p><p>In pancreatic ductal adenocarcinomas (PDAC), profound hypoxia plays key roles in regulating cancer cell behavior, including proliferation, migration, and resistance to therapies. The initial part of this research highlights the important role played by long noncoding RNA (lncRNA) MKLN1-AS, which is controlled by hypoxia-inducible factor-1 alpha (HIF-1α), in the progression of PDAC. Human samples of PDAC showed a notable increase in MKLN1-AS expression, which was linked to a worse outcome. Forced expression of MKLN1-AS greatly reduced the inhibitory impact on the growth and spread of PDAC cells caused by HIF-1α depletion. Experiments on mechanisms showed that HIF-1α influences the expression of MKLN1-AS by directly attaching to a hypoxia response element in the promoter region of MKLN1-AS.MKLN1-AS acts as a competitive endogenous RNA (ceRNA) by binding to miR-185-5p, resulting in the regulation of TEAD1 expression and promoting cell proliferation, migration, and tumor growth. TEAD1 subsequently enhances the development of PDAC. Our study results suggest that MKLN1-AS could serve as a promising target for treatment and a valuable indicator for predicting outcomes in PDAC. PDAC is associated with low oxygen levels, and the long non-coding RNA MKLN1-AS interacts with TEAD1 in this context.</p>","PeriodicalId":9672,"journal":{"name":"Cell Biology and Toxicology","volume":"40 1","pages":"30"},"PeriodicalIF":5.3,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11090931/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140916085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mengxue Zhang, Jie Xing, Shijie Zhao, Minjun Lu, Yueqin Liu, Li Lin, Wujiang Gao, Lu Chen, Wenxin Li, Junyu Shang, Jiamin Zhou, Xinming Yin, Xiaolan Zhu
{"title":"Exosomal YB-1 facilitates ovarian restoration by MALAT1/miR-211-5p/FOXO<sub>3</sub> axis.","authors":"Mengxue Zhang, Jie Xing, Shijie Zhao, Minjun Lu, Yueqin Liu, Li Lin, Wujiang Gao, Lu Chen, Wenxin Li, Junyu Shang, Jiamin Zhou, Xinming Yin, Xiaolan Zhu","doi":"10.1007/s10565-024-09871-8","DOIUrl":"10.1007/s10565-024-09871-8","url":null,"abstract":"<p><p>Premature ovarian failure (POF) affects many adult women less than 40 years of age and leads to infertility. Mesenchymal stem cells-derived small extracellular vesicles (MSCs-sEVs) are attractive candidates for ovarian function restoration and folliculogenesis for POF due to their safety and efficacy, however, the key mediator in MSCs-sEVs that modulates this response and underlying mechanisms remains elusive. Herein, we reported that YB-1 protein was markedly downregulated in vitro and in vivo models of POF induced with H<sub>2</sub>O<sub>2</sub> and CTX respectively, accompanied by granulosa cells (GCs) senescence phenotype. Notably, BMSCs-sEVs transplantation upregulated YB-1, attenuated oxidative damage-induced cellular senescence in GCs, and significantly improved the ovarian function of POF rats, but that was reversed by YB-1 depletion. Moreover, YB-1 showed an obvious decline in serum and GCs in POF patients. Mechanistically, YB-1 as an RNA-binding protein (RBP) physically interacted with a long non-coding RNA, MALAT1, and increased its stability, further, MALAT1 acted as a competing endogenous RNA (ceRNA) to elevate FOXO<sub>3</sub> levels by sequestering miR-211-5p to prevent its degradation, leading to repair of ovarian function. In summary, we demonstrated that BMSCs-sEVs improve ovarian function by releasing YB-1, which mediates MALAT1/miR-211-5p/FOXO<sub>3</sub> axis regulation, providing a possible therapeutic target for patients with POF.</p>","PeriodicalId":9672,"journal":{"name":"Cell Biology and Toxicology","volume":"40 1","pages":"29"},"PeriodicalIF":6.1,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11068691/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140847390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shouying Xu, Bin Cao, Ge Xuan, Shu Xu, Zihao An, Chongying Zhu, Lin Li, Chao Tang
{"title":"Function and regulation of Rab GTPases in cancers.","authors":"Shouying Xu, Bin Cao, Ge Xuan, Shu Xu, Zihao An, Chongying Zhu, Lin Li, Chao Tang","doi":"10.1007/s10565-024-09866-5","DOIUrl":"10.1007/s10565-024-09866-5","url":null,"abstract":"<p><p>The Rab small GTPases are characterized by the distinct intracellular localization and modulate various endocytic, transcytic and exocytic transport pathways. Rab proteins function as scaffolds that connect signaling pathways and intracellular membrane trafficking processes through the recruitment of effectors, such as tethering factors, phosphatases, motors and kinases. In different cancers, Rabs play as either an onco-protein or a tumor suppressor role, highly dependending on the context. The molecular mechanistic research has revealed that Rab proteins are involved in cancer progression through influences on migration, invasion, metabolism, exosome secretion, autophagy, and drug resistance of cancer cells. Therefore, targeting Rab GTPases to recover the dysregulated vesicle transport systems may provide potential strategy to restrain cancer progression. In this review, we discuss the regulation of Rab protein level and activity in modulating pathways involved in tumor progression, and propose that Rab proteins may serve as a prognostic factor in different cancers.</p>","PeriodicalId":9672,"journal":{"name":"Cell Biology and Toxicology","volume":"40 1","pages":"28"},"PeriodicalIF":6.1,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11065922/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140847577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exosomes as mediators of signal transmitters in biotoxins toxicity: a comprehensive review.","authors":"Tongxiao Xu, Bingxin Huangfu, Xiaoyun He, Kunlun Huang","doi":"10.1007/s10565-024-09867-4","DOIUrl":"10.1007/s10565-024-09867-4","url":null,"abstract":"<p><p>Small membranes known as exosomes surround them and are released by several cell types both in vitro and in vivo. These membranes are packed with a variety of biomolecules, including proteins, lipids, deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and non-coding RNA (ncRNA). As a source of biological nanomaterials, exosomes play a role in information and substance transmission between cells and have been identified as a general method of facilitating communication during interactions between the body, target organs, and toxins.. In order to understand the changes and mechanism of the composition and level of exosomes after biotoxin infection, this review focuses on current findings on the exosomes and highlights their novel uses in the toxicity mechanism. Exosomes are mainly used as a delivery carrier or mediated by receptors, and play an immune role after the toxin enters the body. This review expounds on the importance of exosomes in the toxicological mechanism of biotoxins and provides new insights for further diagnosis of toxic biomarkers, detoxification, and treatment development.</p>","PeriodicalId":9672,"journal":{"name":"Cell Biology and Toxicology","volume":"40 1","pages":"27"},"PeriodicalIF":6.1,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11062979/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140854452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Integration of clinical phenoms and metabolomics facilitates precision medicine for lung cancer","authors":"Furong Yan, Chanjuan Liu, Dongli Song, Yiming Zeng, Yanxia Zhan, Xibing Zhuang, Tiankui Qiao, Duojiao Wu, Yunfeng Cheng, Hao Chen","doi":"10.1007/s10565-024-09861-w","DOIUrl":"https://doi.org/10.1007/s10565-024-09861-w","url":null,"abstract":"<p>Lung cancer is a common malignancy that is frequently associated with systemic metabolic disorders. Early detection is pivotal to survival improvement. Although blood biomarkers have been used in its early diagnosis, missed diagnosis and misdiagnosis still exist due to the heterogeneity of lung cancer. Integration of multiple biomarkers or trans-omics results can improve the accuracy and reliability for lung cancer diagnosis. As metabolic reprogramming is a hallmark of lung cancer, metabolites, specifically lipids might be useful for lung cancer detection, yet systematic characterizations of metabolites in lung cancer are still incipient. The present study profiled the polar metabolome and lipidome in the plasma of lung cancer patients to construct an inclusive metabolomic atlas of lung cancer. A comprehensive analysis of lung cancer was also conducted combining metabolomics with clinical phenotypes. Furthermore, the differences in plasma lipid metabolites were compared and analyzed among different lung cancer subtypes. Alcohols, amides, and peptide metabolites were significantly increased in lung cancer, while carboxylic acids, hydrocarbons, and fatty acids were remarkably decreased. Lipid profiling revealed a significant increase in plasma levels of CER, PE, SM, and TAG in individuals with lung cancer as compared to those in healthy controls. Correlation analysis confirmed the association between a panel of metabolites and TAGs. Clinical trans-omics studies elucidated the complex correlations between lipidomic data and clinical phenotypes. The present study emphasized the clinical importance of lipidomics in lung cancer, which involves the correlation between metabolites and the expressions of other omics, ultimately influencing clinical phenotypes. This novel trans-omics network approach would facilitate the development of precision therapy for lung cancer.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3><p>1. Integrating multiple biomarkers or trans-omics results improves diagnostic accuracy and reliability in heterogeneous lung cancer.</p><p>2. Metabolomics and lipidomics, along with clinical phenotypes, construct a comprehensive metabolic profile of lung cancer patients.</p><p>3. TAG expression shows strong positive correlation with polar metabolites, potentially impacting clinical phenotypic changes in lung cancer patients.</p>\u0000","PeriodicalId":9672,"journal":{"name":"Cell Biology and Toxicology","volume":"4 1","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140837623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Retinoic acid mitigates the NSC319726-induced spermatogenesis dysfunction through cuproptosis-independent mechanisms","authors":"Haisheng Yi, Tong Chen, Guitian He, Lingyun Liu, Jiantao Zhao, Kaimin Guo, Yin Cao, Penghao Sun, Xu Zhou, Boqi Zhang, Chunjin Li, Hongliang Wang","doi":"10.1007/s10565-024-09857-6","DOIUrl":"https://doi.org/10.1007/s10565-024-09857-6","url":null,"abstract":"<p>Copper ionophore NSC319726 has attracted researchers' attention in treating diseases, particularly cancers. However, its potential effects on male reproduction during medication are unclear. This study aimed to determine whether NSC319726 exposure affected the male reproductive system. The reproductive toxicity of NSC319726 was evaluated in male mice following a continuous exposure period of 5 weeks. The result showed that NSC319726 exposure caused testis index reduction, spermatogenesis dysfunction, and architectural damage in the testis and epididymis. The exposure interfered with spermatogonia proliferation, meiosis initiation, sperm count, and sperm morphology. The exposure also disturbed androgen synthesis and blood testis barrier integrity. NSC319726 treatment could elevate the copper ions in the testis to induce cuproptosis in the testis. Copper chelator rescued the elevated copper ions in the testis and partly restored the spermatogenesis dysfunction caused by NSC319726. NSC319726 treatment also decreased the level of retinol dehydrogenase 10 (RDH10), thereby inhibiting the conversion of retinol to retinoic acid, causing the inability to initiate meiosis. Retinoic acid treatment could rescue the meiotic initiation and spermatogenesis while not affecting the intracellular copper ion levels. The study provided an insight into the bio-safety of NSC319726. Retinoic acid could be a potential therapy for spermatogenesis impairment in patients undergoing treatment with NSC319726.</p>","PeriodicalId":9672,"journal":{"name":"Cell Biology and Toxicology","volume":"9 1","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140837698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"circRNA-PTPN4 mediated regulation of FOXO3 and ZO-1 expression: implications for blood–brain barrier integrity and cognitive function in uremic encephalopathy","authors":"Yuhan Liu, Yanling Qin, Yanning Zhang","doi":"10.1007/s10565-024-09865-6","DOIUrl":"https://doi.org/10.1007/s10565-024-09865-6","url":null,"abstract":"<p>Uremic encephalopathy (UE) poses a significant challenge in neurology, leading to the need to investigate the involvement of non-coding RNA (ncRNA) in its development. This study employed ncRNA-seq and RNA-seq approaches to identify fundamental ncRNAs, specifically circRNA and miRNA, in the pathogenesis of UE using a mouse model. In vitro and in vivo experiments were conducted to explore the circRNA-PTPN4/miR-301a-3p/FOXO3 axis and its effects on blood–brain barrier (BBB) function and cognitive abilities. The research revealed that circRNA-PTPN4 binds to and inhibits miR-301a-3p, leading to an increase in FOXO3 expression. This upregulation results in alterations in the transcriptional regulation of ZO-1, affecting the permeability of human brain microvascular endothelial cells (HBMECs). The axis also influences the growth, proliferation, and migration of HBMECs. Mice with UE exhibited cognitive deficits, which were reversed by overexpression of circRNA-PTPN4, whereas silencing FOXO3 exacerbated these deficits. Furthermore, the uremic mice showed neuronal loss, inflammation, and dysfunction in the BBB, with the expression of circRNA-PTPN4 demonstrating therapeutic effects. In conclusion, circRNA-PTPN4 plays a role in promoting FOXO3 expression by sequestering miR-301a-3p, ultimately leading to the upregulation of ZO-1 expression and restoration of BBB function in mice with UE. This process contributes to the restoration of cognitive abilities.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3><p>1. The circRNA-PTPN4/miR-301a-3p/FOXO3 axis is identified as a key regulator of blood–brain barrier integrity and cognitive function in uremic encephalopathy.</p><p>2. circRNA-PTPN4 sequestration of miR-301a-3p enhances FOXO3 expression, leading to upregulation of ZO-1 and improved endothelial permeability.</p><p>3. Overexpression of circRNA-PTPN4 in uremic mice restores cognitive abilities and reduces neuronal loss and inflammatory infiltration.</p>","PeriodicalId":9672,"journal":{"name":"Cell Biology and Toxicology","volume":"302 1","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140610449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Activation of CTU2 expression by LXR promotes the development of hepatocellular carcinoma","authors":"Chao Xue, Zhuo Wei, Ye Zhang, Ying Liu, Shuang Zhang, Qi Li, Ke Feng, Xiaoxiao Yang, Guangqing Liu, Yuanli Chen, Xiaoju Li, Zhi Yao, Jihong Han, Yajun Duan","doi":"10.1007/s10565-024-09862-9","DOIUrl":"https://doi.org/10.1007/s10565-024-09862-9","url":null,"abstract":"<p>Cytosolic thiouridylase 2 (CTU2) is an enzyme modifying transfer RNAs post-transcriptionally, which has been implicated in breast cancer and melanoma development. And we found CTU2 participated in hepatocellular carcinoma (HCC) progression here. HepG2 cells as well as xenograft nude mice model were employed to investigate the role of CTU2 in HCC development in vitro and in vivo respectively. Further, we defined CTU2 as a Liver X receptor (LXR) targeted gene, with a typical LXR element in the CTU2 promoter. CTU2 expression was activated by LXR agonist and depressed by LXR knockout. Interestingly, we also found CTU2 took part in lipogenesis by directly enhancing the synthesis of lipogenic proteins, which provided a novel mechanism for LXR regulating lipid synthesis. Meanwhile, lipogenesis was active during cell proliferation, particularly in tumor cells. Reduction of CTU2 expression was related to reduced tumor burden and synergized anti-tumor effect of LXR ligands by inducing tumor cell apoptosis and inhibiting cell proliferation. Taken together, our study identified CTU2 as an LXR target gene. Inhibition of CTU2 expression could enhance the anti-tumor effect of LXR ligand in HCC, identifying CTU2 as a promising target for HCC treatment and providing a novel strategy for the application of LXR agonists in anti-tumor effect.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3><p>1.) CTU2 enhances proliferation of hepatoma carcinoma cells.</p><p>2.) CTU2 is the target gene of LXR, and LXR can transcriptionally activate CTU2 expression.</p><p>3.) CTU2 can promote protein synthesis of lipogenic genes.</p><p>4.) Inhibiting CTU2 expression can synergistically enhance the inhibitory effects of LXR ligands on HCC growth.</p>\u0000","PeriodicalId":9672,"journal":{"name":"Cell Biology and Toxicology","volume":"1 1","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140610519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}