嗅粘膜间充质干细胞衍生的外泌体Lnc A2M-AS1通过与IGF2BP1相互作用,调节TP53INP1介导的线粒体自噬,从而改善帕金森病患者的氧化应激。

IF 5.3 2区 医学 Q2 CELL BIOLOGY
Jiangshan Zhang, Chuang Wang, Guoshuai Yang, Yanhui Zhou, Dan Hou, Ying Xia
{"title":"嗅粘膜间充质干细胞衍生的外泌体Lnc A2M-AS1通过与IGF2BP1相互作用,调节TP53INP1介导的线粒体自噬,从而改善帕金森病患者的氧化应激。","authors":"Jiangshan Zhang, Chuang Wang, Guoshuai Yang, Yanhui Zhou, Dan Hou, Ying Xia","doi":"10.1007/s10565-025-10009-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Exosome Lnc A2M-AS1 from olfactory mucosa mesenchymal stem cells (OM-MSCs) can ameliorate oxidative stress by improving mitophagy in cardiomuscular cells; however, it remains unclear whether this effect exists in the brain tissues of patients with Parkinson's disease (PD).</p><p><strong>Methods: </strong>OM-MSC-Exosomes were isolated and verified based on morphology and specific biomarkers. The effects of OM-MSC-Exo on mitochondrial autophagy, oxidative stress, and lncRNA A2M-AS1 were detected in MPP<sup>+</sup>-treated HT22 cells. The effects of OM-MSC-Exos on mitochondrial autophagy and oxidative stress were detected in an MPTP-induced Parkinson's disease (PD) model in C57BL/6 mice. The interaction between IGF2BP1, A2M-AS1, and TP53INP1 was assessed via RNA pull-down/RNA Immunoprecipitation and RNA stability assays. The effects of lnc A2M-AS1 on IGF2BP1/TP53INP1-mediated mitochondrial autophagy and oxidative stress were verified in MPP<sup>+</sup>-treated HT22 cells and MPTP-induced PD mouse models.</p><p><strong>Results: </strong>Exosomes isolated from olfactory mucosa mesenchymal stem cells were found to be rich in Lnc A2M-AS1. Lnc A2M-AS1 was proved to be able to ameliorate oxidative stress induced by MPP<sup>+</sup> in HT22 cells. lncRNA A2M-AS1 regulates oxidative stress by enhancing mitophagy in HT22 cells. In addition, lncRNA A2M-AS1 induced mitophagy through TP53INP1 and mediated TP53INP1 expression by binding to IGF2BP1. Furthermore, OM-MSC-Exo and Lnc A2M-AS1 treatment improved symptoms and ameliorated oxidative stress in MPTP-induced PD mouse models.</p><p><strong>Conclusion: </strong>Collectively, lncRNA A2M-AS1 from OM-MSC-derived exosomes regulates TP53INP1 expression by targeting IGF2BP1 to induce mitophagy and ameliorate oxidative stress. OM-MSC-derived exosomes could potentially serve as promising candidates for new treatment methods for PD.</p>","PeriodicalId":9672,"journal":{"name":"Cell Biology and Toxicology","volume":"41 1","pages":"60"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11926059/pdf/","citationCount":"0","resultStr":"{\"title\":\"Olfactory mucosal mesenchymal stem cell-derived exosome Lnc A2M-AS1 ameliorates oxidative stress by regulating TP53INP1-mediated mitochondrial autophagy through interacting with IGF2BP1 in Parkinson's diseases.\",\"authors\":\"Jiangshan Zhang, Chuang Wang, Guoshuai Yang, Yanhui Zhou, Dan Hou, Ying Xia\",\"doi\":\"10.1007/s10565-025-10009-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Exosome Lnc A2M-AS1 from olfactory mucosa mesenchymal stem cells (OM-MSCs) can ameliorate oxidative stress by improving mitophagy in cardiomuscular cells; however, it remains unclear whether this effect exists in the brain tissues of patients with Parkinson's disease (PD).</p><p><strong>Methods: </strong>OM-MSC-Exosomes were isolated and verified based on morphology and specific biomarkers. The effects of OM-MSC-Exo on mitochondrial autophagy, oxidative stress, and lncRNA A2M-AS1 were detected in MPP<sup>+</sup>-treated HT22 cells. The effects of OM-MSC-Exos on mitochondrial autophagy and oxidative stress were detected in an MPTP-induced Parkinson's disease (PD) model in C57BL/6 mice. The interaction between IGF2BP1, A2M-AS1, and TP53INP1 was assessed via RNA pull-down/RNA Immunoprecipitation and RNA stability assays. The effects of lnc A2M-AS1 on IGF2BP1/TP53INP1-mediated mitochondrial autophagy and oxidative stress were verified in MPP<sup>+</sup>-treated HT22 cells and MPTP-induced PD mouse models.</p><p><strong>Results: </strong>Exosomes isolated from olfactory mucosa mesenchymal stem cells were found to be rich in Lnc A2M-AS1. Lnc A2M-AS1 was proved to be able to ameliorate oxidative stress induced by MPP<sup>+</sup> in HT22 cells. lncRNA A2M-AS1 regulates oxidative stress by enhancing mitophagy in HT22 cells. In addition, lncRNA A2M-AS1 induced mitophagy through TP53INP1 and mediated TP53INP1 expression by binding to IGF2BP1. Furthermore, OM-MSC-Exo and Lnc A2M-AS1 treatment improved symptoms and ameliorated oxidative stress in MPTP-induced PD mouse models.</p><p><strong>Conclusion: </strong>Collectively, lncRNA A2M-AS1 from OM-MSC-derived exosomes regulates TP53INP1 expression by targeting IGF2BP1 to induce mitophagy and ameliorate oxidative stress. OM-MSC-derived exosomes could potentially serve as promising candidates for new treatment methods for PD.</p>\",\"PeriodicalId\":9672,\"journal\":{\"name\":\"Cell Biology and Toxicology\",\"volume\":\"41 1\",\"pages\":\"60\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11926059/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Biology and Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10565-025-10009-7\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biology and Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10565-025-10009-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Olfactory mucosal mesenchymal stem cell-derived exosome Lnc A2M-AS1 ameliorates oxidative stress by regulating TP53INP1-mediated mitochondrial autophagy through interacting with IGF2BP1 in Parkinson's diseases.

Background: Exosome Lnc A2M-AS1 from olfactory mucosa mesenchymal stem cells (OM-MSCs) can ameliorate oxidative stress by improving mitophagy in cardiomuscular cells; however, it remains unclear whether this effect exists in the brain tissues of patients with Parkinson's disease (PD).

Methods: OM-MSC-Exosomes were isolated and verified based on morphology and specific biomarkers. The effects of OM-MSC-Exo on mitochondrial autophagy, oxidative stress, and lncRNA A2M-AS1 were detected in MPP+-treated HT22 cells. The effects of OM-MSC-Exos on mitochondrial autophagy and oxidative stress were detected in an MPTP-induced Parkinson's disease (PD) model in C57BL/6 mice. The interaction between IGF2BP1, A2M-AS1, and TP53INP1 was assessed via RNA pull-down/RNA Immunoprecipitation and RNA stability assays. The effects of lnc A2M-AS1 on IGF2BP1/TP53INP1-mediated mitochondrial autophagy and oxidative stress were verified in MPP+-treated HT22 cells and MPTP-induced PD mouse models.

Results: Exosomes isolated from olfactory mucosa mesenchymal stem cells were found to be rich in Lnc A2M-AS1. Lnc A2M-AS1 was proved to be able to ameliorate oxidative stress induced by MPP+ in HT22 cells. lncRNA A2M-AS1 regulates oxidative stress by enhancing mitophagy in HT22 cells. In addition, lncRNA A2M-AS1 induced mitophagy through TP53INP1 and mediated TP53INP1 expression by binding to IGF2BP1. Furthermore, OM-MSC-Exo and Lnc A2M-AS1 treatment improved symptoms and ameliorated oxidative stress in MPTP-induced PD mouse models.

Conclusion: Collectively, lncRNA A2M-AS1 from OM-MSC-derived exosomes regulates TP53INP1 expression by targeting IGF2BP1 to induce mitophagy and ameliorate oxidative stress. OM-MSC-derived exosomes could potentially serve as promising candidates for new treatment methods for PD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Biology and Toxicology
Cell Biology and Toxicology 生物-毒理学
CiteScore
9.90
自引率
4.90%
发文量
101
审稿时长
>12 weeks
期刊介绍: Cell Biology and Toxicology (CBT) is an international journal focused on clinical and translational research with an emphasis on molecular and cell biology, genetic and epigenetic heterogeneity, drug discovery and development, and molecular pharmacology and toxicology. CBT has a disease-specific scope prioritizing publications on gene and protein-based regulation, intracellular signaling pathway dysfunction, cell type-specific function, and systems in biomedicine in drug discovery and development. CBT publishes original articles with outstanding, innovative and significant findings, important reviews on recent research advances and issues of high current interest, opinion articles of leading edge science, and rapid communication or reports, on molecular mechanisms and therapies in diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信