Cell Biology and Toxicology最新文献

筛选
英文 中文
Downregulation of MYBL1 in endothelial cells contributes to atherosclerosis by repressing PLEKHM1-inducing autophagy. 内皮细胞中MYBL1的下调通过抑制PLEKHM1诱导的自噬作用导致动脉粥样硬化。
IF 6.1 2区 医学
Cell Biology and Toxicology Pub Date : 2024-05-27 DOI: 10.1007/s10565-024-09873-6
Shi-Ao Ding, Hao Liu, Rui Zheng, Yang Ge, Zheng Fu, Ju Mei, Min Tang
{"title":"Downregulation of MYBL1 in endothelial cells contributes to atherosclerosis by repressing PLEKHM1-inducing autophagy.","authors":"Shi-Ao Ding, Hao Liu, Rui Zheng, Yang Ge, Zheng Fu, Ju Mei, Min Tang","doi":"10.1007/s10565-024-09873-6","DOIUrl":"10.1007/s10565-024-09873-6","url":null,"abstract":"<p><p>MYBL1 is a strong transcriptional activator involved in the cell signaling. However, there is no systematic study on the role of MYBL1 in atherosclerosis. The aim of this study is to elucidate the role and mechanism of MYBL1 in atherosclerosis. GSE28829, GSE43292 and GSE41571 were downloaded from NCBI for differentially expressed analysis. The expression levels of MYBL1 in atherosclerotic plaque tissue and normal vessels were detected by qRT-PCR, Western blot and Immunohistochemistry. Transwell and CCK-8 were used to detect the migration and proliferation of HUVECs after silencing MYBL1. RNA-seq, Western blot, qRT-PCR, Luciferase reporter system, Immunofluorescence, Flow cytometry, ChIP and CO-IP were used to study the role and mechanism of MYBL1 in atherosclerosis. The microarray data of GSE28829, GSE43292, and GSE41571 were analyzed and intersected, and then MYBL1 were verified. MYBL1 was down-regulated in atherosclerotic plaque tissue. After silencing of MYBL1, HUVECs were damaged, and their migration and proliferation abilities were weakened. Overexpression of MYBL1 significantly enhanced the migration and proliferation of HUVECs. MYBL1 knockdown induced abnormal autophagy in HUVEC cells, suggesting that MYBL1 was involved in the regulation of HUVECs through autophagy. Mechanistic studies showed that MYBL1 knockdown inhibited autophagosome and lysosomal fusion in HUVECs by inhibiting PLEKHM1, thereby exacerbating atherosclerosis. Furthermore, MYBL1 was found to repress lipid accumulation in HUVECs after oxLDL treatment. MYBL1 knockdown in HUVECs was involved in atherosclerosis by inhibiting PLEKHM1-induced autophagy, which provided a novel target of therapy for atherosclerosis.</p>","PeriodicalId":9672,"journal":{"name":"Cell Biology and Toxicology","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11128406/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141154605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exosomes derived from adipose tissue-derived stem cells alleviated H2O2-induced oxidative stress and endothelial-to-mesenchymal transition in human umbilical vein endothelial cells by inhibition of the mir-486-3p/Sirt6/Smad signaling pathway. 源自脂肪组织干细胞的外泌体通过抑制mir-486-3p/Sirt6/Smad信号通路,减轻了H2O2诱导的氧化应激和人脐静脉内皮细胞的内皮到间质转化。
IF 6.1 2区 医学
Cell Biology and Toxicology Pub Date : 2024-05-25 DOI: 10.1007/s10565-024-09881-6
Yan Li, Yujie Xiao, Yage Shang, Chaolei Xu, Chao Han, Dahai Hu, Juntao Han, Hongtao Wang
{"title":"Exosomes derived from adipose tissue-derived stem cells alleviated H<sub>2</sub>O<sub>2</sub>-induced oxidative stress and endothelial-to-mesenchymal transition in human umbilical vein endothelial cells by inhibition of the mir-486-3p/Sirt6/Smad signaling pathway.","authors":"Yan Li, Yujie Xiao, Yage Shang, Chaolei Xu, Chao Han, Dahai Hu, Juntao Han, Hongtao Wang","doi":"10.1007/s10565-024-09881-6","DOIUrl":"10.1007/s10565-024-09881-6","url":null,"abstract":"<p><p>Hypertrophic scar (HS) is characterized by excessive collagen deposition and myofibroblasts activation. Endothelial-to-mesenchymal transition (EndoMT) and oxidative stress were pivotal in skin fibrosis process. Exosomes derived from adipose tissue-derived stem cells (ADSC-Exo) have the potential to attenuate EndoMT and inhibit fibrosis. The study revealed reactive oxygen species (ROS) levels were increased during EndoMT occurrence of dermal vasculature of HS. The morphology of endothelial cells exposure to H<sub>2</sub>O<sub>2,</sub> serving as an in vitro model of oxidative stress damage, transitioned from a cobblestone-like appearance to a spindle-like shape. Additionally, the levels of endothelial markers decreased in H<sub>2</sub>O<sub>2</sub>-treated endothelial cell, while the expression of fibrotic markers increased. Furthermore, H<sub>2</sub>O<sub>2</sub> facilitated the accumulation of ROS, inhibited cell proliferation, retarded its migration and suppressed tube formation in endothelial cell. However, ADSC-Exo counteracted the biological effects induced by H<sub>2</sub>O<sub>2</sub>. Subsequently, miRNAs sequencing analysis revealed the significance of mir-486-3p in endothelial cell exposed to H<sub>2</sub>O<sub>2</sub> and ADSC-Exo. Mir-486-3p overexpression enhanced the acceleration of EndoMT, its inhibitors represented the attenuation of EndoMT. Meanwhile, the target regulatory relationship was observed between mir-486-3p and Sirt6, whereby Sirt6 exerted its anti-EndoMT effect through Smad2/3 signaling pathway. Besides, our research had successfully demonstrated the impact of ADSC-Exo and mir-486-3p on animal models. These findings of our study collectively elucidated that ADSC-Exo effectively alleviated H<sub>2</sub>O<sub>2</sub>-induced ROS and EndoMT by inhibiting the mir-486-3p/Sirt6/Smad axis.</p>","PeriodicalId":9672,"journal":{"name":"Cell Biology and Toxicology","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11126451/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141092938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rutin attenuates ensartinib-induced hepatotoxicity by non-transcriptional regulation of TXNIP. 芦丁通过对TXNIP的非转录调控减轻恩沙替尼诱导的肝毒性
IF 6.1 2区 医学
Cell Biology and Toxicology Pub Date : 2024-05-24 DOI: 10.1007/s10565-024-09883-4
Wentong Wu, Jinjin Li, Yiming Yin, Yourong Zhou, Xiangliang Huang, Yashi Cao, Xueqin Chen, Yunfang Zhou, Jiangxia Du, Zhifei Xu, Bo Yang, Qiaojun He, Xiaochun Yang, Yuhuai Hu, Hao Yan, Peihua Luo
{"title":"Rutin attenuates ensartinib-induced hepatotoxicity by non-transcriptional regulation of TXNIP.","authors":"Wentong Wu, Jinjin Li, Yiming Yin, Yourong Zhou, Xiangliang Huang, Yashi Cao, Xueqin Chen, Yunfang Zhou, Jiangxia Du, Zhifei Xu, Bo Yang, Qiaojun He, Xiaochun Yang, Yuhuai Hu, Hao Yan, Peihua Luo","doi":"10.1007/s10565-024-09883-4","DOIUrl":"10.1007/s10565-024-09883-4","url":null,"abstract":"<p><p>Ensartinib, an approved ALK inhibitor, is used as a first-line therapy for advanced ALK-positive non-small cell lung cancer in China. However, the hepatotoxicity of ensartinib seriously limits its clinical application and the regulatory mechanism is still elusive. Here, through transcriptome analysis we found that transcriptional activation of TXNIP was the main cause of ensartinib-induced liver dysfunction. A high TXNIP level and abnormal TXNIP translocation severely impaired hepatic function via mitochondrial dysfunction and hepatocyte apoptosis, and TXNIP deficiency attenuated hepatocyte apoptosis under ensartinib treatment. The increase in TXNIP induced by ensartinib is related to AKT inhibition and is mediated by MondoA. Through screening potential TXNIP inhibitors, we found that the natural polyphenolic flavonoid rutin, unlike most reported TXNIP inhibitors can inhibit TXNIP by binding to TXNIP and partially promoting its proteasomal degradation. Further studies showed rutin can attenuate the hepatotoxicity of ensartinib without antagonizing its antitumor effects. Accordingly, we suggest that TXNIP is the key cause of ensartinib-induced hepatotoxicity and rutin is a potential clinically safe and feasible therapeutic strategy for TXNIP intervention.</p>","PeriodicalId":9672,"journal":{"name":"Cell Biology and Toxicology","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11126486/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141092883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Distinct epigenetic modulation of differentially expressed genes in the adult mouse brain following prenatal exposure to low-dose bisphenol A. 产前暴露于低剂量双酚 A 后,成年小鼠大脑中不同表达基因的表观遗传学调节。
IF 6.1 2区 医学
Cell Biology and Toxicology Pub Date : 2024-05-22 DOI: 10.1007/s10565-024-09875-4
Jie Weng, Yue-Yan Zhu, Li-Yong Liao, Xin-Tong Yang, Yu-Hao Dong, Wei-da Meng, Dai-Jing Sun, Yun Liu, Wen-Zhu Peng, Yan Jiang
{"title":"Distinct epigenetic modulation of differentially expressed genes in the adult mouse brain following prenatal exposure to low-dose bisphenol A.","authors":"Jie Weng, Yue-Yan Zhu, Li-Yong Liao, Xin-Tong Yang, Yu-Hao Dong, Wei-da Meng, Dai-Jing Sun, Yun Liu, Wen-Zhu Peng, Yan Jiang","doi":"10.1007/s10565-024-09875-4","DOIUrl":"10.1007/s10565-024-09875-4","url":null,"abstract":"<p><p>Bisphenol A (BPA) is a common component in the manufacture of daily plastic consumer goods. Recent studies have suggested that prenatal exposure to BPA can increase the susceptibility of offspring to mental illness, although the underlying mechanisms remain unclear. In this study, we performed transcriptomic and epigenomic profiling in the adult mouse brain following prenatal exposure to low-dose BPA. We observed a sex-specific transcriptional dysregulation in the cortex, with more significant differentially expressed genes was observed in adult cortex from male offspring. Moreover, the upregulated genes primarily influenced neuronal functions, while the downregulated genes were significantly associated with energy metabolism pathways. More evidence supporting impaired mitochondrial function included a decreased ATP level and a reduced number of mitochondria in the cortical neuron of the BPA group. We further investigated the higher-order chromatin regulatory patterns of DEGs by incorporating published Hi-C data. Interestingly, we found that upregulated genes exhibited more distal interactions with multiple enhancers, while downregulated genes displayed relatively short-range interactions among adjacent genes. Our data further revealed decreased H3K9me3 signal on the distal enhancers of upregulated genes, whereas increased DNA methylation and H3K27me3 signals on the promoters of downregulated genes. In summary, our study provides compelling evidence for the potential health risks associated with prenatal exposure to BPA, and uncovers sex-specific transcriptional changes with a complex interplay of multiple epigenetic mechanisms.</p>","PeriodicalId":9672,"journal":{"name":"Cell Biology and Toxicology","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11111541/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141080941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Activation of lipophagy ameliorates cadmium-induced neural tube defects via reducing low density lipoprotein cholesterol levels in mouse placentas. 通过降低小鼠胎盘中的低密度脂蛋白胆固醇水平,激活噬脂作用可改善镉诱发的神经管缺陷。
IF 6.1 2区 医学
Cell Biology and Toxicology Pub Date : 2024-05-21 DOI: 10.1007/s10565-024-09885-2
Yu-Feng Zhang, Shuang Zhang, Qing Ling, Wei Chang, Lu-Lu Tan, Jin Zhang, Yong-Wei Xiong, Hua-Long Zhu, Po Bian, Hua Wang
{"title":"Activation of lipophagy ameliorates cadmium-induced neural tube defects via reducing low density lipoprotein cholesterol levels in mouse placentas.","authors":"Yu-Feng Zhang, Shuang Zhang, Qing Ling, Wei Chang, Lu-Lu Tan, Jin Zhang, Yong-Wei Xiong, Hua-Long Zhu, Po Bian, Hua Wang","doi":"10.1007/s10565-024-09885-2","DOIUrl":"10.1007/s10565-024-09885-2","url":null,"abstract":"<p><p>Neural tube defects (NTDs) represent a prevalent and severe category of congenital anomalies in humans. Cadmium (Cd) is an environmental teratogen known to cause fetal NTDs. However, its underlying mechanisms remain elusive. This study aims to investigate the therapeutic potential of lipophagy in the treatment of NTDs, providing valuable insights for future strategies targeting lipophagy activation as a means to mitigate NTDs.We successfully modeled NTDs by Cd exposure during pregnancy. RNA sequencing was employed to investigate the transcriptomic alterations and functional enrichment of differentially expressed genes in NTD placental tissues. Subsequently, pharmacological/genetic (Atg5<sup>-/-</sup> placentas) experiments confirmed that inducing placental lipophagy can alleviate Cd induced-NTDs. We found that Cd exposure caused NTDs. Further analyzed transcriptomic data from the placentas with NTDs which revealed significant downregulation of low-density lipoprotein receptor associated protein 1(Lrp1) gene expression responsible for positive regulation of low-density lipoprotein cholesterol (LDL-C) transport. Correspondingly, there was an increase in maternal serum/placenta/amniotic fluid LDL-C content. Subsequently, we have discovered that Cd exposure activated placental lipophagy. Pharmacological/genetic (Atg5-/- placentas) experiments confirmed that inducing placental lipophagy can alleviate Cd induced-NTDs. Furthermore, our findings demonstrate that activation of placental lipophagy effectively counteracts the Cd-induced elevation in LDL-C levels. Lipophagy serves to mitigate Cd-induced NTDs by reducing LDL-C levels within mouse placentas.</p>","PeriodicalId":9672,"journal":{"name":"Cell Biology and Toxicology","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11108957/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141070628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deficiency of P2RY11 causes narcolepsy and attenuates the recruitment of neutrophils and macrophages in the inflammatory response in zebrafish. 缺乏 P2RY11 会导致斑马鱼嗜睡症,并在炎症反应中减少中性粒细胞和巨噬细胞的招募。
IF 5.3 2区 医学
Cell Biology and Toxicology Pub Date : 2024-05-21 DOI: 10.1007/s10565-024-09882-5
Lin Zhao, Li-Feng Wang, Yi-Chen Wang, Ao Liu, Qian-Wen Xiao, Ming-Chuan Hu, Ming-Zhu Sun, Hui-Yu Hao, Qian Gao, Xin Zhao, Dong-Yan Chen
{"title":"Deficiency of P2RY11 causes narcolepsy and attenuates the recruitment of neutrophils and macrophages in the inflammatory response in zebrafish.","authors":"Lin Zhao, Li-Feng Wang, Yi-Chen Wang, Ao Liu, Qian-Wen Xiao, Ming-Chuan Hu, Ming-Zhu Sun, Hui-Yu Hao, Qian Gao, Xin Zhao, Dong-Yan Chen","doi":"10.1007/s10565-024-09882-5","DOIUrl":"10.1007/s10565-024-09882-5","url":null,"abstract":"<p><p>Purinergic receptor P2Y11, a G protein-coupled receptor that is stimulated by extracellular ATP, has been demonstrated to be related to the chemotaxis of granulocytes, apoptosis of neutrophils, and secretion of cytokines in vitro. P2Y11 mutations were associated with narcolepsy. However, little is known about the roles of P2RY11 in the occurrence of narcolepsy and inflammatory response in vivo. In this study, we generated a zebrafish P2Y11 mutant using CRISPR/Cas9 genome editing and demonstrated that the P2Y11 mutant replicated the narcolepsy-like features including reduced HCRT expression and excessive daytime sleepiness, suggesting that P2Y11 is essential for HCRT expression. Furthermore, we accessed the cytokine expression in the mutant and revealed that the P2RY11 mutation disrupted the systemic inflammatory balance by reducing il4, il10 and tgfb, and increasing il6, tnfa, and il1b. In addition, the P2RY11-deficient larvae with caudal fin injuries exhibited significantly slower migration and less recruitment of neutrophils and macrophages at damaged site, and lower expression of anti-inflammatory cytokines during tissue damage. All these findings highlight the vital roles of P2RY11 in maintaining HCRT production and secreting anti-inflammatory cytokines in the native environment, and suggested that P2RY11-deficient zebrafish can serve as a reliable and unique model to further explore narcolepsy and inflammatory-related diseases with impaired neutrophil and macrophage responses.</p>","PeriodicalId":9672,"journal":{"name":"Cell Biology and Toxicology","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11108927/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141070630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mild endoplasmic reticulum stress alleviates FB1-triggered intestinal pyroptosis via the Sec62-PERK pathway. 轻度内质网应激可通过 Sec62-PERK 途径缓解 FB1 触发的肠道热蛋白沉积。
IF 6.1 2区 医学
Cell Biology and Toxicology Pub Date : 2024-05-21 DOI: 10.1007/s10565-024-09868-3
Li Ma, Zhengqing Li, Dongmei Yue, Jie Qu, Ping Zhang, Shuxia Zhang, Kehe Huang, Yinuo Zou, Chunfeng Wang, Xingxiang Chen
{"title":"Mild endoplasmic reticulum stress alleviates FB1-triggered intestinal pyroptosis via the Sec62-PERK pathway.","authors":"Li Ma, Zhengqing Li, Dongmei Yue, Jie Qu, Ping Zhang, Shuxia Zhang, Kehe Huang, Yinuo Zou, Chunfeng Wang, Xingxiang Chen","doi":"10.1007/s10565-024-09868-3","DOIUrl":"10.1007/s10565-024-09868-3","url":null,"abstract":"<p><p>Fumonisin B1 (FB1), a water-soluble mycotoxin released by Fusarium moniliforme Sheld, is widely present in corn and its derivative products, and seriously endangers human life and health. Recent studies have reported that FB1 can lead to pyroptosis, however, the mechanisms by which FB1-induced pyroptosis remain indistinct. In the present study, we aim to investigate the mechanisms of pyroptosis in intestinal porcine epithelial cells (IPEC-J2) and the relationship between FB1-induced endoplasmic reticulum stress (ERS) and pyroptosis. Our experimental results showed that the pyroptosis protein indicators in IPEC-J2 were significantly increased after exposure to FB1. The ERS markers, including glucose-regulated Protein 78 (GRP78), PKR-like ER kinase protein (PERK), and preprotein translocation factor (Sec62) were also significantly increased. Using small interfering RNA silencing of PERK or Sec62, the results demonstrated that upregulation of Sec62 activates the PERK pathway, and activation of the PERK signaling pathway is upstream of FB1-induced pyroptosis. After using the ERS inhibitor 4-PBA reduced the FB1-triggered intestinal injury by the Sec62-PERK pathway. In conclusion, we found that FB1 induced pyroptosis by upregulating Sec62 to activate the PERK pathway, and mild ERS alleviates FB1-triggered damage. It all boils down to one fact, the study provides a new perspective for further, and improving the toxicological mechanism of FB1.</p>","PeriodicalId":9672,"journal":{"name":"Cell Biology and Toxicology","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11106095/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141070633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatial transcriptomics reveals gene interactions and signaling pathway dynamics in rat embryos with anorectal malformation. 空间转录组学揭示了肛门直肠畸形大鼠胚胎中的基因相互作用和信号通路动态。
IF 6.1 2区 医学
Cell Biology and Toxicology Pub Date : 2024-05-21 DOI: 10.1007/s10565-024-09878-1
Chen-Yi Wang, Mu-Yu Li, Si-Ying Li, Xiao-Gao Wei, Zheng-Wei Yuan, Xiao-Bing Tang, Yu-Zuo Bai
{"title":"Spatial transcriptomics reveals gene interactions and signaling pathway dynamics in rat embryos with anorectal malformation.","authors":"Chen-Yi Wang, Mu-Yu Li, Si-Ying Li, Xiao-Gao Wei, Zheng-Wei Yuan, Xiao-Bing Tang, Yu-Zuo Bai","doi":"10.1007/s10565-024-09878-1","DOIUrl":"10.1007/s10565-024-09878-1","url":null,"abstract":"<p><p>Anorectal malformation (ARM) is a prevalent early pregnancy digestive tract anomaly. The intricate anatomy of the embryonic cloaca region makes it challenging for traditional high-throughput sequencing methods to capture location-specific information. Spatial transcriptomics was used to sequence libraries of frozen sections from embryonic rats at gestational days (GD) 14 to 16, covering both normal and ARM cases. Bioinformatics analyses and predictions were performed using methods such as WGCNA, GSEA, and PROGENy. Immunofluorescence staining was used to verify gene expression levels. Gene expression data was obtained with anatomical annotations of clusters, focusing on the cloaca region's location-specific traits. WGCNA revealed gene modules linked to normal and ARM cloacal anatomy development, with cooperation between modules on GD14 and GD15. Differential gene expression profiles and functional enrichment were presented. Notably, protein levels of Pcsk9, Hmgb2, and Sod1 were found to be downregulated in the GD15 ARM hindgut. The PROGENy algorithm predicted the activity and interplay of common signaling pathways in embryonic sections, highlighting their synergistic and complementary effects. A competing endogenous RNA (ceRNA) regulatory network was constructed from whole transcriptome data. Spatial transcriptomics provided location-specific cloaca region gene expression. Diverse bioinformatics analyses deepened our understanding of ARM's molecular interactions, guiding future research and providing insights into gene regulation in ARM development.</p>","PeriodicalId":9672,"journal":{"name":"Cell Biology and Toxicology","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11106128/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141070641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exosomes enriched by miR-429-3p derived from ITGB1 modified Telocytes alleviates hypoxia-induced pulmonary arterial hypertension through regulating Rac1 expression. 富含 miR-429-3p 的外泌体来自 ITGB1 修饰的泰勒细胞,通过调节 Rac1 的表达缓解缺氧诱发的肺动脉高压。
IF 6.1 2区 医学
Cell Biology and Toxicology Pub Date : 2024-05-20 DOI: 10.1007/s10565-024-09879-0
Ruixue Qi, Yong Zhang, Furong Yan
{"title":"Exosomes enriched by miR-429-3p derived from ITGB1 modified Telocytes alleviates hypoxia-induced pulmonary arterial hypertension through regulating Rac1 expression.","authors":"Ruixue Qi, Yong Zhang, Furong Yan","doi":"10.1007/s10565-024-09879-0","DOIUrl":"10.1007/s10565-024-09879-0","url":null,"abstract":"<p><strong>Background: </strong>Recent studies have emphasized the critical role of Telocytes (TCs)-derived exosomes in organ tissue injury and repair. Our previous research showed a significant increase in ITGB1 within TCs. Pulmonary Arterial Hypertension (PAH) is marked by a loss of microvessel regeneration and progressive vascular remodeling. This study aims to investigate whether exosomes derived from ITGB1-modified TCs (ITGB1-Exo) could mitigate PAH.</p><p><strong>Methods: </strong>We analyzed differentially expressed microRNAs (DEmiRs) in TCs using Affymetrix Genechip miRNA 4.0 arrays. Exosomes isolated from TC culture supernatants were verified through transmission electron microscopy and Nanoparticle Tracking Analysis. The impact of miR-429-3p-enriched exosomes (Exo-ITGB1) on hypoxia-induced pulmonary arterial smooth muscle cells (PASMCs) was evaluated using CCK-8, transwell assay, and inflammatory factor analysis. A four-week hypoxia-induced mouse model of PAH was constructed, and H&E staining, along with Immunofluorescence staining, were employed to assess PAH progression.</p><p><strong>Results: </strong>Forty-five miRNAs exhibited significant differential expression in TCs following ITGB1 knockdown. Mus-miR-429-3p, significantly upregulated in ITGB1-overexpressing TCs and in ITGB1-modified TC-derived exosomes, was selected for further investigation. Exo-ITGB1 notably inhibited the migration, proliferation, and inflammation of PASMCs by targeting Rac1. Overexpressing Rac1 partly counteracted Exo-ITGB1's effects. In vivo administration of Exo-ITGB1 effectively reduced pulmonary vascular remodeling and inflammation.</p><p><strong>Conclusions: </strong>Our findings reveal that ITGB1-modified TC-derived exosomes exert anti-inflammatory effects and reverse vascular remodeling through the miR-429-3p/Rac1 axis. This provides potential therapeutic strategies for PAH treatment.</p>","PeriodicalId":9672,"journal":{"name":"Cell Biology and Toxicology","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11106170/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141065142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SIRT1 restores mitochondrial structure and function in rats by activating SIRT3 after cerebral ischemia/reperfusion injury. 大鼠脑缺血/再灌注损伤后,SIRT1 通过激活 SIRT3 恢复线粒体结构和功能。
IF 5.3 2区 医学
Cell Biology and Toxicology Pub Date : 2024-05-20 DOI: 10.1007/s10565-024-09869-2
Manli Chen, Ji Liu, Wenwen Wu, Ting Guo, Jinjin Yuan, Zhiyun Wu, Zhijian Zheng, Zijun Zhao, Qiang Lin, Nan Liu, Hongbin Chen
{"title":"SIRT1 restores mitochondrial structure and function in rats by activating SIRT3 after cerebral ischemia/reperfusion injury.","authors":"Manli Chen, Ji Liu, Wenwen Wu, Ting Guo, Jinjin Yuan, Zhiyun Wu, Zhijian Zheng, Zijun Zhao, Qiang Lin, Nan Liu, Hongbin Chen","doi":"10.1007/s10565-024-09869-2","DOIUrl":"10.1007/s10565-024-09869-2","url":null,"abstract":"<p><p>Mitochondrial dysfunction contributes to cerebral ischemia-reperfusion (CI/R) injury, which can be ameliorated by Sirtuin-3 (SIRT3). Under stress conditions, the SIRT3-promoted mitochondrial functional recovery depends on both its activity and expression. However, the approach to enhance SIRT3 activity after CI/R injury remains unelucidated. In this study, Sprague-Dawley (SD) rats were intracranially injected with either adeno-associated viral Sirtuin-1 (AAV-SIRT1) or AAV-sh_SIRT1 before undergoing transient middle cerebral artery occlusion (tMCAO). Primary cortical neurons were cultured and transfected with lentiviral SIRT1 (LV-SIRT1) and LV-sh_SIRT1 respectively before oxygen-glucose deprivation/reoxygenation (OGD/R). Afterwards, rats and neurons were respectively treated with a selective SIRT3 inhibitor, 3-(1H-1,2,3-triazol-4-yl) pyridine (3-TYP). The expression, function, and related mechanism of SIRT1 were investigated by Western Blot, flow cytometry, immunofluorescence staining, etc. After CI/R injury, SIRT1 expression decreased in vivo and in vitro. The simulation and immune-analyses reported strong interaction between SIRT1 and SIRT3 in the cerebral mitochondria before and after CI/R. SIRT1 overexpression enhanced SIRT3 activity by increasing the deacetylation of SIRT3, which ameliorated CI/R-induced cerebral infarction, neuronal apoptosis, oxidative stress, neurological and motor dysfunction, and mitochondrial respiratory chain dysfunction, promoted mitochondrial biogenesis, and retained mitochondrial integrity and mitochondrial morphology. Meanwhile, SIRT1 overexpression alleviated OGD/R-induced neuronal death and mitochondrial bioenergetic deficits. These effects were reversed by AAV-sh_SIRT1 and the neuroprotective effects of SIRT1 were partially offset by 3-TYP. These results suggest that SIRT1 restores the structure and function of mitochondria by activating SIRT3, offering neuroprotection against CI/R injury, which signifies a potential approach for the clinical management of cerebral ischemia.</p>","PeriodicalId":9672,"journal":{"name":"Cell Biology and Toxicology","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11106166/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141065183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信