Lujuan He, Zezhi Zhou, Jufen Wang, Jiehan Jiang, Shenggang Liu
{"title":"U2AF65 mediated circPVT1 promotes NSCLC cell proliferation and inhibits ferroptosis through the miR-338-3p/GPX4 axis.","authors":"Lujuan He, Zezhi Zhou, Jufen Wang, Jiehan Jiang, Shenggang Liu","doi":"10.1007/s10565-025-10028-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Dysregulation of circRNA expression is associated with increased metastasis and an adverse prognosis in non-small cell lung cancer (NSCLC). Herein, this study assessed the role and regulatory mechanism of circPVT1 in NSCLC development.</p><p><strong>Methods: </strong>CircPVT1 expression was determined using qPCR. Functional assays, including cell proliferation, colony formation, and ferroptosis-related measurements (ROS, MDA, SOD, GSH and Fe<sup>2+</sup> levels), were conducted following circPVT1 knockdown. The interactions between RNA and protein were determined through RIP, dual-luciferase reporter and fluorescence in situ hybridization. Actinomycin D assay was employed to test circPVT1 stability. Additionally, tumor progression in vivo was evaluated in xenograft models with U2AF65 knockdown.</p><p><strong>Results: </strong>CircPVT1 was significantly elevated in NSCLC samples, correlating with worse clinical outcomes. Its knockdown resulted in diminished cell proliferation and increased ferroptosis. Mechanically, circPVT1 sponges miR-338-3p, facilitating GPX4 expression, which enhanced cell proliferation. U2AF65 bound to and stabilized circPVT1, promoting cell proliferation. In animal models, U2AF65 knockdown suppressed tumor progression by regulating the circPVT1/miR-338-3p/GPX4 signaling pathway.</p><p><strong>Conclusions: </strong>U2AF65 stabilizes circPVT1 to promote NSCLC advancement through miR-338-3p suppression and GPX4 upregulation. Thus, circPVT1 and U2AF65 may be potential therapeutic targets in NSCLC.</p>","PeriodicalId":9672,"journal":{"name":"Cell Biology and Toxicology","volume":"41 1","pages":"84"},"PeriodicalIF":5.3000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12078385/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biology and Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10565-025-10028-4","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Dysregulation of circRNA expression is associated with increased metastasis and an adverse prognosis in non-small cell lung cancer (NSCLC). Herein, this study assessed the role and regulatory mechanism of circPVT1 in NSCLC development.
Methods: CircPVT1 expression was determined using qPCR. Functional assays, including cell proliferation, colony formation, and ferroptosis-related measurements (ROS, MDA, SOD, GSH and Fe2+ levels), were conducted following circPVT1 knockdown. The interactions between RNA and protein were determined through RIP, dual-luciferase reporter and fluorescence in situ hybridization. Actinomycin D assay was employed to test circPVT1 stability. Additionally, tumor progression in vivo was evaluated in xenograft models with U2AF65 knockdown.
Results: CircPVT1 was significantly elevated in NSCLC samples, correlating with worse clinical outcomes. Its knockdown resulted in diminished cell proliferation and increased ferroptosis. Mechanically, circPVT1 sponges miR-338-3p, facilitating GPX4 expression, which enhanced cell proliferation. U2AF65 bound to and stabilized circPVT1, promoting cell proliferation. In animal models, U2AF65 knockdown suppressed tumor progression by regulating the circPVT1/miR-338-3p/GPX4 signaling pathway.
Conclusions: U2AF65 stabilizes circPVT1 to promote NSCLC advancement through miR-338-3p suppression and GPX4 upregulation. Thus, circPVT1 and U2AF65 may be potential therapeutic targets in NSCLC.
期刊介绍:
Cell Biology and Toxicology (CBT) is an international journal focused on clinical and translational research with an emphasis on molecular and cell biology, genetic and epigenetic heterogeneity, drug discovery and development, and molecular pharmacology and toxicology. CBT has a disease-specific scope prioritizing publications on gene and protein-based regulation, intracellular signaling pathway dysfunction, cell type-specific function, and systems in biomedicine in drug discovery and development. CBT publishes original articles with outstanding, innovative and significant findings, important reviews on recent research advances and issues of high current interest, opinion articles of leading edge science, and rapid communication or reports, on molecular mechanisms and therapies in diseases.