Cancer immunology research最新文献

筛选
英文 中文
Level of Expression of MHCI-Presented Neoepitopes Influences Tumor Rejection by Neoantigen-Specific CD8+ T Cells. MHCI 呈递的新表位表达水平会影响新抗原特异性 CD8+ T 细胞对肿瘤的排斥反应。
IF 8.1 1区 医学
Cancer immunology research Pub Date : 2025-01-09 DOI: 10.1158/2326-6066.CIR-23-0639
Li Deng, Scott R Walsh, Andrew Nguyen, Jordon M Inkol, Michael J Westerveld, Lan Chen, Nader El-Sayes, Karen L Mossman, Samuel T Workenhe, Yonghong Wan
{"title":"Level of Expression of MHCI-Presented Neoepitopes Influences Tumor Rejection by Neoantigen-Specific CD8+ T Cells.","authors":"Li Deng, Scott R Walsh, Andrew Nguyen, Jordon M Inkol, Michael J Westerveld, Lan Chen, Nader El-Sayes, Karen L Mossman, Samuel T Workenhe, Yonghong Wan","doi":"10.1158/2326-6066.CIR-23-0639","DOIUrl":"10.1158/2326-6066.CIR-23-0639","url":null,"abstract":"<p><p>Neoantigen-targeted therapy holds an array of benefits for cancer immunotherapy, but the identification of peptide targets with tumor rejection capacity remains a limitation. To better define the criteria dictating tumor rejection potential, we examined the capacity of high-magnitude T-cell responses induced toward several distinct neoantigen targets to regress MC38 tumors. Despite their demonstrated immunogenicity, vaccine-induced T-cell responses were unable to regress established MC38 tumors or prevent tumor engraftment in a prophylactic setting. Although unable to kill tumor cells, T cells showed robust killing capacity toward neoantigen peptide-loaded cells. Tumor-cell killing was rescued by saturation of target peptide-loaded MHCs on the cell surface. Overall, this study demonstrates a pivotal role for target protein expression levels in modulating the tumor rejection capacity of neoantigens. Thus, inclusion of this metric, in addition to immunogenicity analysis, may benefit antigen prediction techniques to ensure the full antitumor effect of cancer vaccines.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":" ","pages":"84-97"},"PeriodicalIF":8.1,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142388319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Phase I Trial of Trebananib, an Angiopoietin 1 and 2 Neutralizing Peptibody, Combined with Pembrolizumab in Patients with Advanced Ovarian and Colorectal Cancer. 血管生成素 1 和 2 中和肽抗体 Trebananib 与 Pembrolizumab 联合治疗晚期卵巢癌和结直肠癌患者的 1 期试验。
IF 8.1 1区 医学
Cancer immunology research Pub Date : 2025-01-09 DOI: 10.1158/2326-6066.CIR-23-1027
Brandon M Huffman, Osama E Rahma, Kevin Tyan, Yvonne Y Li, Anita Giobbie-Hurder, Benjamin L Schlechter, Bruno Bockorny, Michael P Manos, Andrew D Cherniack, Joanna Baginska, Adrián Mariño-Enríquez, Katrina Z Kao, Anna K Maloney, Allison Ferro, Sarah Kelland, Kimmie Ng, Harshabad Singh, Emma L Welsh, Kathleen L Pfaff, Marios Giannakis, Scott J Rodig, F Stephen Hodi, James M Cleary
{"title":"A Phase I Trial of Trebananib, an Angiopoietin 1 and 2 Neutralizing Peptibody, Combined with Pembrolizumab in Patients with Advanced Ovarian and Colorectal Cancer.","authors":"Brandon M Huffman, Osama E Rahma, Kevin Tyan, Yvonne Y Li, Anita Giobbie-Hurder, Benjamin L Schlechter, Bruno Bockorny, Michael P Manos, Andrew D Cherniack, Joanna Baginska, Adrián Mariño-Enríquez, Katrina Z Kao, Anna K Maloney, Allison Ferro, Sarah Kelland, Kimmie Ng, Harshabad Singh, Emma L Welsh, Kathleen L Pfaff, Marios Giannakis, Scott J Rodig, F Stephen Hodi, James M Cleary","doi":"10.1158/2326-6066.CIR-23-1027","DOIUrl":"10.1158/2326-6066.CIR-23-1027","url":null,"abstract":"<p><p>Ovarian cancers and microsatellite stable (MSS) colorectal cancers are insensitive to anti-programmed cell death 1 (PD-1) immunotherapy, and new immunotherapeutic approaches are needed. Preclinical data suggest a relationship between immunotherapy resistance and elevated angiopoietin 2 levels. We performed a phase I dose escalation study of pembrolizumab and the angiopoietin 1/2 inhibitor trebananib (NCT03239145). This multicenter trial enrolled patients with metastatic ovarian cancer or MSS colorectal cancer. Trebananib was administered intravenously weekly for 12 weeks with 200 mg intravenous pembrolizumab every 3 weeks. The toxicity profile of this combination was manageable, and the protocol-defined highest dose level (trebananib 30 mg/kg weekly plus pembrolizumab 200 mg every 3 weeks) was declared the maximum tolerated dose. The objective response rate for all patients was 7.3% (90% confidence interval, 2.5%-15.9%). Three patients with MSS colorectal cancer had durable responses for ≥3 years. One responding patient's colorectal cancer harbored a POLE mutation. The other two responding patients had left-sided colorectal cancers, with no baseline liver metastases, and genomic analysis revealed that they both had KRAS wild-type, ERBB2-amplified tumors. After development of acquired resistance, biopsy of one patient's KRAS wild-type ERBB2-amplified tumor showed a substantial decline in tumor-associated T cells and an increase in immunosuppressive intratumoral macrophages. Future studies are needed to carefully assess whether clinicogenomic features, such as lack of liver metastases, ERBB2 amplification, and left-sided tumors, can predict increased sensitivity to PD-1 immunotherapy combinations.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":" ","pages":"9-22"},"PeriodicalIF":8.1,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142342192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The bidirectional interplay between T cell-based immunotherapies and the tumor microenvironment. 基于T细胞的免疫疗法与肿瘤微环境的双向相互作用。
IF 8.1 1区 医学
Cancer immunology research Pub Date : 2025-01-09 DOI: 10.1158/2326-6066.CIR-24-0857
Alfredo Pherez-Farah, Gioia Boncompagni, Aleksey Chudnovskiy, Giulia Pasqual
{"title":"The bidirectional interplay between T cell-based immunotherapies and the tumor microenvironment.","authors":"Alfredo Pherez-Farah, Gioia Boncompagni, Aleksey Chudnovskiy, Giulia Pasqual","doi":"10.1158/2326-6066.CIR-24-0857","DOIUrl":"10.1158/2326-6066.CIR-24-0857","url":null,"abstract":"<p><p>T cell-based therapies, including Tumor Infiltrating Lymphocyte Therapy (TIL), T cell receptor engineered T cells (TCR T), and Chimeric Antigen Receptor T cells (CAR T), are powerful therapeutic approaches for cancer treatment. While these therapies are primarily known for their direct cytotoxic effects on cancer cells, accumulating evidence indicates that they also influence the tumor microenvironment (TME), by altering the cytokine milieu and recruiting additional effector populations to help orchestrate the antitumor immune response. Conversely, the TME itself can modulate the behaviour of these therapies within the host by either supporting or inhibiting their activity. In this review we provide an overview of clinical and preclinical data on the bidirectional influences between T cell therapies and the TME. Unravelling the interactions between T cell-based therapies and the TME is critical for a better understanding of their mechanisms of action, resistance, and toxicity, with the goal of optimizing efficacy and safety.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":" ","pages":""},"PeriodicalIF":8.1,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7617322/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142945094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deleting Trim33 in Myeloid Cells Improves the Efficiency of Radiotherapy through an IFNβ-Dependent Antitumor Immune Response. 通过干扰素 beta 依赖性抗肿瘤免疫反应,删除骨髓细胞中的 Trim33 可提高放疗效率。
IF 8.1 1区 医学
Cancer immunology research Pub Date : 2025-01-09 DOI: 10.1158/2326-6066.CIR-24-0026
Anaïs Assouvie, Marine Gerbé-de-Thoré, Claire Torres, Véronique Ménard, Alexia Alfaro, Eric Deutsch, Michele Mondini, Germain Rousselet
{"title":"Deleting Trim33 in Myeloid Cells Improves the Efficiency of Radiotherapy through an IFNβ-Dependent Antitumor Immune Response.","authors":"Anaïs Assouvie, Marine Gerbé-de-Thoré, Claire Torres, Véronique Ménard, Alexia Alfaro, Eric Deutsch, Michele Mondini, Germain Rousselet","doi":"10.1158/2326-6066.CIR-24-0026","DOIUrl":"10.1158/2326-6066.CIR-24-0026","url":null,"abstract":"<p><p>Radiotherapy (RT) triggers an immune response that contributes to antitumor effects. Induction of IFNβ is a key event in this immunogenicity of RT. We have previously shown that TRIM33, a chromatin reader, restrains IFNβ expression in Toll-like receptor-activated myeloid cells. In this study, we explored whether deleting Trim33 in myeloid cells might improve the radio-induced immune response and subsequent efficiency of RT. We first established that Trim33-/- bone marrow-derived macrophages showed increased expression of IFNβ in response to direct irradiation, or to treatment with irradiated cancer cells, further supporting our hypothesis. We then tested the efficiency of a single-dose RT in three subcutaneous tumor models and one orthotopic tumor model. In all models, myeloid deletion of Trim33 led to a significantly improved response after RT, leading to a complete and durable response in most of the treated mice bearing orthotopic oral tumors. This effect required the involvement of the type I IFN pathway and the presence of CD8+ T lymphocytes but not NK cells. In addition, cured mice were capable of rejecting a secondary tumor challenge, demonstrating an in situ vaccination effect. We conclude that deleting Trim33 in myeloid cells improves RT efficiency, through a mechanism involving the type I IFN pathway and the immune response. Our work suggests that myeloid Trim33 is a host factor affecting the tumor response to RT, thus representing a new potential therapeutic target for modifying RT responses.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":" ","pages":"109-121"},"PeriodicalIF":8.1,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142342193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Host tissue factors predict immune surveillance and therapeutic outcomes in gastric cancer. 宿主组织因子预测胃癌的免疫监测和治疗结果。
IF 8.1 1区 医学
Cancer immunology research Pub Date : 2025-01-09 DOI: 10.1158/2326-6066.CIR-23-0563
Miseker Abate, Emily Stroobant, Teng Fei, Ya-Hui Lin, Shoji Shimada, Harrison Drebin, Eunise Chen, Laura H Tang, Sohrab P Shah, Jedd D Wolchok, Yelena Y Janjigian, Vivian E Strong, Santosha A Vardhana
{"title":"Host tissue factors predict immune surveillance and therapeutic outcomes in gastric cancer.","authors":"Miseker Abate, Emily Stroobant, Teng Fei, Ya-Hui Lin, Shoji Shimada, Harrison Drebin, Eunise Chen, Laura H Tang, Sohrab P Shah, Jedd D Wolchok, Yelena Y Janjigian, Vivian E Strong, Santosha A Vardhana","doi":"10.1158/2326-6066.CIR-23-0563","DOIUrl":"https://doi.org/10.1158/2326-6066.CIR-23-0563","url":null,"abstract":"<p><p>The immune composition of solid tumors is typically inferred from biomarkers, such as histologic and molecular classifications, somatic mutational burden, and PD-L1 expression. However, the extent to which these biomarkers predict the immune landscape in gastric adenocarcinoma-an aggressive cancer often linked to chronic inflammation-remains poorly understood. We leveraged high-dimensional spectral cytometry to generate a comprehensive single-cell immune landscape of tumors, normal tissue, and lymph nodes from patients in the Western Hemisphere with gastric adenocarcinoma. The immune composition of gastric tumors could not be predicted by traditional metrics such as tumor histology, molecular classification, mutational burden, or PD-L1 expression via IHC. Instead, our findings revealed that innate immune surveillance within tumors could be anticipated by the immune profile of the normal gastric mucosa. Additionally, distinct T-cell states in the lymph nodes were linked to the accumulation of activated and memory-like CD8+ tumor-infiltrating lymphocytes (TILs). Unbiased re-classification of patients based on tumor-specific immune infiltrate generated four distinct subtypes with varying immune compositions. Tumors with a T-cell-dominant immune subtype, which spanned TCGA molecular subtypes, were exclusively associated with superior responses to immunotherapy. Parallel analysis of metastatic gastric cancer patients treated with immune checkpoint blockade showed that patients who responded to immunotherapy had a pre-treatment tumor composition that corresponded to a T-cell-dominant immune subtype from our analysis. Taken together, this work identifies key host-specific factors associated with intratumoral immune composition in gastric cancer and offers an immunological classification system that can effectively identify patients likely to benefit from immune-based therapies.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":" ","pages":""},"PeriodicalIF":8.1,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142945090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Sampling of Highlights from the Literature. 从文献中精选的一些亮点。
IF 8.1 1区 医学
Cancer immunology research Pub Date : 2025-01-09 DOI: 10.1158/2326-6066.CIR-13-1-WWR
{"title":"A Sampling of Highlights from the Literature.","authors":"","doi":"10.1158/2326-6066.CIR-13-1-WWR","DOIUrl":"https://doi.org/10.1158/2326-6066.CIR-13-1-WWR","url":null,"abstract":"","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":"13 1","pages":"7"},"PeriodicalIF":8.1,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142945102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CD27-Armored BCMA CAR T-cell Therapy (CBG-002) for Relapsed and Refractory Multiple Myeloma: A Phase I Clinical Trial. CD27-Armored BCMA CAR T 细胞疗法(CBG-002)治疗复发性和难治性多发性骨髓瘤:一期临床试验。
IF 8.1 1区 医学
Cancer immunology research Pub Date : 2025-01-09 DOI: 10.1158/2326-6066.CIR-24-0051
Yang Xu, Xuzhao Zhang, Dijia Xin, Jiawei Zhang, Luyao Wang, Yili Fan, Boxiao Chen, Wen Lei, Xi Qiu, Huawei Jiang, Xibin Xiao, Liansheng Huang, Jiandong Yu, Xin Yang, Wenjun Yang, Jiangao Zhu, Wenbin Qian
{"title":"CD27-Armored BCMA CAR T-cell Therapy (CBG-002) for Relapsed and Refractory Multiple Myeloma: A Phase I Clinical Trial.","authors":"Yang Xu, Xuzhao Zhang, Dijia Xin, Jiawei Zhang, Luyao Wang, Yili Fan, Boxiao Chen, Wen Lei, Xi Qiu, Huawei Jiang, Xibin Xiao, Liansheng Huang, Jiandong Yu, Xin Yang, Wenjun Yang, Jiangao Zhu, Wenbin Qian","doi":"10.1158/2326-6066.CIR-24-0051","DOIUrl":"10.1158/2326-6066.CIR-24-0051","url":null,"abstract":"<p><p>B-cell maturation antigen (BCMA) chimeric antigen receptor (CAR) T-cell therapy has been approved for the treatment of relapsed and refractory multiple myeloma (RRMM); however, whether patients have long-term responses has yet to be established. We investigated the feasibility of CBG-002, a CD27-armored BCMA CAR T-cell therapy, to improve clinical efficacy in patients with RRMM. We present preclinical data showing the activity of CBG-002 against myeloma and results from a phase I clinical trial (NCT04706936) evaluating its safety and efficacy in patients with RRMM. The primary endpoint was safety, as assessed by grade 3 or 4 adverse events (AE). Key secondary endpoints were overall response rate (ORR), duration of response (DOR), progression-free survival (PFS), and overall survival (OS). A total of 11 patients were enrolled and received CBG-002 therapy. Nine patients developed grade 1 or 2 cytokine release syndrome (CRS), whereas no patients experienced grade 3 or higher CRS or immune effector cell-associated neurotoxicity syndrome. Other grade 3 or higher AEs included neutropenia (72.7%), thrombocytopenia (45.5%), and anemia (36.4%). At a median follow-up of 16.7 months, the ORR was 81.8%, including a stringent complete response/complete response rate of 45.5%, very good partial response rate of 18.2%, and partial response rate of 18.2%, with a median DOR of 8.9 (range 1.8-21.9) months. The median OS was not reached, and the median PFS was 8.5 (2.7-22.9) months. In this phase I study, CBG-002, a CD27-armored BCMA CAR T-cell therapy, demonstrated safety and clinical efficacy in patients with RRMM.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":" ","pages":"23-34"},"PeriodicalIF":8.1,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142458699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CD49a Targeting Enhances NK Cell Function and Antitumor Immunity. CD49a 靶向可增强 NK 细胞功能和抗肿瘤免疫力。
IF 8.1 1区 医学
Cancer immunology research Pub Date : 2025-01-09 DOI: 10.1158/2326-6066.CIR-24-0124
Yu Zhang, Yangyang Li, Zhengfeng Zhang, Xiaodong Zheng, Hui Peng, Zhigang Tian, Rui Sun, Haoyu Sun
{"title":"CD49a Targeting Enhances NK Cell Function and Antitumor Immunity.","authors":"Yu Zhang, Yangyang Li, Zhengfeng Zhang, Xiaodong Zheng, Hui Peng, Zhigang Tian, Rui Sun, Haoyu Sun","doi":"10.1158/2326-6066.CIR-24-0124","DOIUrl":"10.1158/2326-6066.CIR-24-0124","url":null,"abstract":"<p><p>Approximately 70% of patients receiving immune checkpoint blockade therapies develop treatment resistance. Thus, there is a need for the identification of additional immunotherapeutic targets. CD49a is a membrane protein expressed on NK cells and T cells. In this study, we found that CD49a was highly expressed on the surface of tumor-infiltrating NK cells in various mouse tumor models and that CD49a+ tumor-infiltrating NK cells were more exhausted than CD49a- tumor-infiltrating NK cells. Furthermore, CD49a or NK-specific CD49a deficiency slowed tumor growth and prolonged survival in several mouse tumor models, primarily through the essential role played by NK cells in antitumor activities. Blockade of CD49a using an mAb suppressed tumor development in mice, and combination treatment with anti-PD-L1 further enhanced antitumor efficacy. Our research reveals CD49a on NK cells as an immunotherapeutic target and highlights the potential clinical applications of CD49a-targeted therapies.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":" ","pages":"139-151"},"PeriodicalIF":8.1,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142686223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transient EZH2 Suppression by Tazemetostat during In Vitro Expansion Maintains T-Cell Stemness and Improves Adoptive T-Cell Therapy. 在体外扩增过程中用泰泽美司他暂时抑制 EZH2 可保持 T 细胞的干性并改善 T 细胞采纳疗法。
IF 8.1 1区 医学
Cancer immunology research Pub Date : 2025-01-09 DOI: 10.1158/2326-6066.CIR-24-0089
Yingqin Hou, Jaroslav Zak, Yujie Shi, Isaraphorn Pratumchai, Brandon Dinner, Wenjian Wang, Ke Qin, Evan W Weber, John R Teijaro, Peng Wu
{"title":"Transient EZH2 Suppression by Tazemetostat during In Vitro Expansion Maintains T-Cell Stemness and Improves Adoptive T-Cell Therapy.","authors":"Yingqin Hou, Jaroslav Zak, Yujie Shi, Isaraphorn Pratumchai, Brandon Dinner, Wenjian Wang, Ke Qin, Evan W Weber, John R Teijaro, Peng Wu","doi":"10.1158/2326-6066.CIR-24-0089","DOIUrl":"10.1158/2326-6066.CIR-24-0089","url":null,"abstract":"<p><p>The histone methyltransferase enhancer of zeste homolog 2 (EZH2) plays important roles in T-cell differentiation, proliferation, and function. Previous studies have demonstrated that genetic deletion of EZH2 in CD8+ or total T cells impairs their antiviral and antitumor activities, cytokine production, and ability to expand upon rechallenge. Contrary to the detrimental role of deleting T cell-intrinsic EZH2, in this study, we demonstrated that transient inhibition of EZH2 in T cells prior to the phenotypic onset of exhaustion with a clinically approved inhibitor, tazemetostat (Taz), delayed their dysfunctional progression and preserved T-cell stemness and polyfunctionality but had no negative impact on cell proliferation. Taz-induced T-cell epigenetic reprogramming increased the expression of the self-renewal T-cell transcription factor TCF1 by reducing H3K27 methylation at its promoter preferentially in rapidly dividing T cells. In a murine melanoma model, T cells depleted of EZH2 induced poor tumor control, whereas adoptively transferred T cells pretreated with Taz exhibited superior antitumor immunity, especially when used in combination with anti-PD-1 blockade. Collectively, these data highlight the potential of transient epigenetic reprogramming by EZH2 inhibition to enhance adoptive T-cell immunotherapy.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":" ","pages":"47-65"},"PeriodicalIF":8.1,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11717634/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142375128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Complement Factor H Is an ICOS Ligand Modulating Tregs in the Glioma Microenvironment. 补体因子H是一种ICOS配体,可调节胶质瘤微环境中的集落细胞。
IF 8.1 1区 医学
Cancer immunology research Pub Date : 2025-01-09 DOI: 10.1158/2326-6066.CIR-23-1092
Karolina I Smolag, Jakub Olszowka, Rebecca Rosberg, Elinn Johansson, Elisabet Marinko, Karin Leandersson, David J O'Connell, Valeria Governa, Emre Can Tuysuz, Mattias Belting, Alexander Pietras, Myriam Martin, Anna M Blom
{"title":"Complement Factor H Is an ICOS Ligand Modulating Tregs in the Glioma Microenvironment.","authors":"Karolina I Smolag, Jakub Olszowka, Rebecca Rosberg, Elinn Johansson, Elisabet Marinko, Karin Leandersson, David J O'Connell, Valeria Governa, Emre Can Tuysuz, Mattias Belting, Alexander Pietras, Myriam Martin, Anna M Blom","doi":"10.1158/2326-6066.CIR-23-1092","DOIUrl":"10.1158/2326-6066.CIR-23-1092","url":null,"abstract":"<p><p>The survival rate of patients with glioma has not significantly increased in recent years despite aggressive treatment and advances in immunotherapy. The limited response to treatments is partially attributed to the immunosuppressive tumor microenvironment, in which regulatory T cells (Treg) play a pivotal role in immunologic tolerance. In this study, we investigated the impact of complement factor H (FH) on Tregs within the glioma microenvironment and found that FH is an ICOS ligand. The binding of FH to this immune checkpoint molecule promoted the survival and function of Tregs and induced the secretion of TGFβ and IL10 while suppressing T-cell proliferation. We further demonstrated that cancer cells in human and mouse gliomas directly produce FH. Database investigations revealed that upregulation of FH expression was associated with the presence of Tregs and correlated with worse prognosis for patients with glioma. We confirmed the effect of FH on glioma development in a mouse model, in which FH knockdown was associated with a decrease in the number of ICOS+ Tregs and demonstrated a tendency of prolonged survival (P = 0.064). Because the accumulation of Tregs represents a promising prognostic and therapeutic target, evaluating FH expression should be considered when assessing the effectiveness of and resistance to immunotherapies against glioma.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":" ","pages":"122-138"},"PeriodicalIF":8.1,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11712038/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142388318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信