Amber N Clements, Andrea L Casillas, Caitlyn E Flores, Hope Liou, Rachel K Toth, Shailender S Chauhan, Kai Sutterby, Sachin Kumar Deshmukh, Sharon Wu, Joanne Xiu, Alex Farrell, Milan Radovich, Chadi Nabhan, Elisabeth I Heath, Rana R McKay, Noor Subah, Sara Centuori, Travis J Weeler, Anne E Cress, Gregory C Rogers, Justin E Wilson, Alejandro Recio-Boiles, Noel A Warfel
{"title":"抑制肿瘤相关巨噬细胞中的PIM激酶可抑制炎性体激活并使前列腺癌对免疫治疗敏感。","authors":"Amber N Clements, Andrea L Casillas, Caitlyn E Flores, Hope Liou, Rachel K Toth, Shailender S Chauhan, Kai Sutterby, Sachin Kumar Deshmukh, Sharon Wu, Joanne Xiu, Alex Farrell, Milan Radovich, Chadi Nabhan, Elisabeth I Heath, Rana R McKay, Noor Subah, Sara Centuori, Travis J Weeler, Anne E Cress, Gregory C Rogers, Justin E Wilson, Alejandro Recio-Boiles, Noel A Warfel","doi":"10.1158/2326-6066.CIR-24-0591","DOIUrl":null,"url":null,"abstract":"<p><p>Immune checkpoint inhibitors (ICI) have changed the treatment paradigm for many cancers but have not shown benefit in prostate cancer. Chronic inflammation contributes to the immunosuppressive prostate tumor microenvironment and is associated with poor response to ICIs. The primary source of inflammatory cytokine production is the inflammasome. In this study, we identify the proviral integration site for Moloney murine leukemia virus (PIM) kinases as regulators of inflammasome activation in tumor-associated macrophages (TAM). The analysis of clinical data from a cohort of patients with treatment-naïve, hormone-responsive prostate cancer revealed that tumors from patients with high PIM1/2/3 displayed an immunosuppressive tumor microenvironment characterized by high inflammation and a high density of repressive immune cells, most notably TAMs. Macrophage-specific knockout of PIM reduced tumor growth in syngeneic models of prostate cancer. Transcriptional analyses indicated that eliminating PIM from macrophages enhanced the adaptive immune response and increased cytotoxic immune cells. Combined treatment with PIM inhibitors and ICIs synergistically reduced tumor growth. Immune profiling revealed that PIM inhibitors sensitized prostate cancer tumors to ICIs by increasing tumor suppressive TAMs and increasing the activation of cytotoxic T cells. Our data implicate macrophage PIM as a driver of inflammation that limits ICI potency and provide preclinical evidence that PIM inhibitors are an effective strategy to improve the ICI efficacy in prostate cancer.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":" ","pages":"633-645"},"PeriodicalIF":8.1000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12048269/pdf/","citationCount":"0","resultStr":"{\"title\":\"Inhibition of PIM Kinase in Tumor-Associated Macrophages Suppresses Inflammasome Activation and Sensitizes Prostate Cancer to Immunotherapy.\",\"authors\":\"Amber N Clements, Andrea L Casillas, Caitlyn E Flores, Hope Liou, Rachel K Toth, Shailender S Chauhan, Kai Sutterby, Sachin Kumar Deshmukh, Sharon Wu, Joanne Xiu, Alex Farrell, Milan Radovich, Chadi Nabhan, Elisabeth I Heath, Rana R McKay, Noor Subah, Sara Centuori, Travis J Weeler, Anne E Cress, Gregory C Rogers, Justin E Wilson, Alejandro Recio-Boiles, Noel A Warfel\",\"doi\":\"10.1158/2326-6066.CIR-24-0591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Immune checkpoint inhibitors (ICI) have changed the treatment paradigm for many cancers but have not shown benefit in prostate cancer. Chronic inflammation contributes to the immunosuppressive prostate tumor microenvironment and is associated with poor response to ICIs. The primary source of inflammatory cytokine production is the inflammasome. In this study, we identify the proviral integration site for Moloney murine leukemia virus (PIM) kinases as regulators of inflammasome activation in tumor-associated macrophages (TAM). The analysis of clinical data from a cohort of patients with treatment-naïve, hormone-responsive prostate cancer revealed that tumors from patients with high PIM1/2/3 displayed an immunosuppressive tumor microenvironment characterized by high inflammation and a high density of repressive immune cells, most notably TAMs. Macrophage-specific knockout of PIM reduced tumor growth in syngeneic models of prostate cancer. Transcriptional analyses indicated that eliminating PIM from macrophages enhanced the adaptive immune response and increased cytotoxic immune cells. Combined treatment with PIM inhibitors and ICIs synergistically reduced tumor growth. Immune profiling revealed that PIM inhibitors sensitized prostate cancer tumors to ICIs by increasing tumor suppressive TAMs and increasing the activation of cytotoxic T cells. Our data implicate macrophage PIM as a driver of inflammation that limits ICI potency and provide preclinical evidence that PIM inhibitors are an effective strategy to improve the ICI efficacy in prostate cancer.</p>\",\"PeriodicalId\":9474,\"journal\":{\"name\":\"Cancer immunology research\",\"volume\":\" \",\"pages\":\"633-645\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12048269/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer immunology research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1158/2326-6066.CIR-24-0591\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer immunology research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/2326-6066.CIR-24-0591","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Inhibition of PIM Kinase in Tumor-Associated Macrophages Suppresses Inflammasome Activation and Sensitizes Prostate Cancer to Immunotherapy.
Immune checkpoint inhibitors (ICI) have changed the treatment paradigm for many cancers but have not shown benefit in prostate cancer. Chronic inflammation contributes to the immunosuppressive prostate tumor microenvironment and is associated with poor response to ICIs. The primary source of inflammatory cytokine production is the inflammasome. In this study, we identify the proviral integration site for Moloney murine leukemia virus (PIM) kinases as regulators of inflammasome activation in tumor-associated macrophages (TAM). The analysis of clinical data from a cohort of patients with treatment-naïve, hormone-responsive prostate cancer revealed that tumors from patients with high PIM1/2/3 displayed an immunosuppressive tumor microenvironment characterized by high inflammation and a high density of repressive immune cells, most notably TAMs. Macrophage-specific knockout of PIM reduced tumor growth in syngeneic models of prostate cancer. Transcriptional analyses indicated that eliminating PIM from macrophages enhanced the adaptive immune response and increased cytotoxic immune cells. Combined treatment with PIM inhibitors and ICIs synergistically reduced tumor growth. Immune profiling revealed that PIM inhibitors sensitized prostate cancer tumors to ICIs by increasing tumor suppressive TAMs and increasing the activation of cytotoxic T cells. Our data implicate macrophage PIM as a driver of inflammation that limits ICI potency and provide preclinical evidence that PIM inhibitors are an effective strategy to improve the ICI efficacy in prostate cancer.
期刊介绍:
Cancer Immunology Research publishes exceptional original articles showcasing significant breakthroughs across the spectrum of cancer immunology. From fundamental inquiries into host-tumor interactions to developmental therapeutics, early translational studies, and comprehensive analyses of late-stage clinical trials, the journal provides a comprehensive view of the discipline. In addition to original research, the journal features reviews and opinion pieces of broad significance, fostering cross-disciplinary collaboration within the cancer research community. Serving as a premier resource for immunology knowledge in cancer research, the journal drives deeper insights into the host-tumor relationship, potent cancer treatments, and enhanced clinical outcomes.
Key areas of interest include endogenous antitumor immunity, tumor-promoting inflammation, cancer antigens, vaccines, antibodies, cellular therapy, cytokines, immune regulation, immune suppression, immunomodulatory effects of cancer treatment, emerging technologies, and insightful clinical investigations with immunological implications.