CarcinogenesisPub Date : 2024-07-08DOI: 10.1093/carcin/bgac093
Daji Yang, Ping Zhang, Ziting Yang, Guojun Hou, Ziyu Yang
{"title":"miR-4461 inhibits liver cancer stem cells expansion and chemoresistance via regulating SIRT1.","authors":"Daji Yang, Ping Zhang, Ziting Yang, Guojun Hou, Ziyu Yang","doi":"10.1093/carcin/bgac093","DOIUrl":"10.1093/carcin/bgac093","url":null,"abstract":"<p><p>MicroRNAs (miRNAs) were involved in tumorigenesis, progression, recurrence and drug resistance of hepatocellular carcinoma (HCC). However, few miRNAs have been identified and entered clinical practice. We show here that miR-4461 expression is reduced in liver cancer stem cells (CSCs) and predicts the poor prognosis of HCC patients. Knockdown of miR-4461 enhances the self-renewal and tumorigenicity of liver CSCs. Conversely, forced miR-4461 expression inhibits liver CSCs self-renewal and tumorigenesis. Mechanically, miR-4461 directly targets sirtuin 1 (SIRT1) via binding to its 3' untranslated region in liver CSCs. The correlation of miR-4461 and SIRT1 was confirmed in human HCC patients' tissues. Additionally, we found that miR-4461 overexpression hepatoma cells are more sensitive to cisplatin treatment. Patient-derived xenografts also showed that miR-4461 high HCC xenografts are sensitive to cisplatin treatment. Clinical cohort analysis further confirmed that HCC patients with high miR-4461 benefited more from transcatheter arterial chemoembolization treatment. In conclusion, our findings revealed the crucial role of miR-4461 in liver CSCs expansion and cisplatin response, rendering miR-4461 as an optimal target for the prevention and intervention of HCC.</p>","PeriodicalId":9446,"journal":{"name":"Carcinogenesis","volume":" ","pages":"463-474"},"PeriodicalIF":3.3,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40722540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Unfurling the functional association between long intergenic noncoding RNAs (lincRNAs) and HPV16-related cervical cancer pathogenesis through weighted gene co-expression network analysis of differentially expressed lincRNAs and coding genes.","authors":"Abarna Sinha, Sahana Ghosh, Abhisikta Ghosh, Arnab Ghosh, Sonia Mathai, Jaydip Bhaumik, Asima Mukhopadhyay, Arindam Maitra, Nidhan K Biswas, Sharmila Sengupta","doi":"10.1093/carcin/bgae019","DOIUrl":"10.1093/carcin/bgae019","url":null,"abstract":"<p><p>Long intergenic noncoding RNAs (lincRNAs) do not overlap annotated coding genes and are located in intergenic regions, as opposed to antisense and sense-intronic lncRNAs, located in genic regions. LincRNAs influence gene expression profiles and are thereby key to disease pathogenesis. In this study, we assessed the association between lincRNAs and HPV16-positive cervical cancer (CaCx) pathogenesis using weighted gene co-expression network analysis (WGCNA) with coding genes, comparing differentially expressed lincRNA and coding genes (DElincGs and DEcGs, respectively) in HPV16-positive patients with CaCx (n = 44) with those in HPV-negative healthy individuals (n = 34). Our analysis revealed five DElincG modules, co-expressing and correlating with DEcGs. We validated a substantial number of such module-specific correlations in the HPV16-positive cancer TCGA-CESC dataset. Four such modules, displayed significant correlations with patient traits, such as HPV16 physical status, lymph node involvement and overall survival (OS), highlighting a collaborative effect of all genes within specific modules on traits. Using the DAVID bioinformatics knowledgebase, we identified the underlying biological processes associated with these modules as cancer development and progression-associated pathways. Next, we identified the top 10 DElincGs with the highest connectivity within each functional module. Focusing on the prognostic module hub genes, downregulated CTD-2619J13.13 expression was associated with poor patient OS. This lincRNA gene interacted with 25 coding genes of its module and was associated with such biological processes as keratinization loss and keratinocyte differentiation, reflecting severe disease phenotypes. This study has translational relevance in fighting various cancers with high mortality rates in underdeveloped countries.</p>","PeriodicalId":9446,"journal":{"name":"Carcinogenesis","volume":" ","pages":"451-462"},"PeriodicalIF":3.3,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140038738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CarcinogenesisPub Date : 2024-07-08DOI: 10.1093/carcin/bgae011
Yuuki Ohara, Amanda J Craig, Huaitian Liu, Shouhui Yang, Paloma Moreno, Tiffany H Dorsey, Helen Cawley, Azadeh Azizian, Jochen Gaedcke, Michael Ghadimi, Nader Hanna, Stefan Ambs, S Perwez Hussain
{"title":"LMO3 is a suppressor of the basal-like/squamous subtype and reduces disease aggressiveness of pancreatic cancer through glycerol 3-phosphate metabolism.","authors":"Yuuki Ohara, Amanda J Craig, Huaitian Liu, Shouhui Yang, Paloma Moreno, Tiffany H Dorsey, Helen Cawley, Azadeh Azizian, Jochen Gaedcke, Michael Ghadimi, Nader Hanna, Stefan Ambs, S Perwez Hussain","doi":"10.1093/carcin/bgae011","DOIUrl":"10.1093/carcin/bgae011","url":null,"abstract":"<p><p>Pancreatic ductal adenocarcinoma (PDAC) encompasses diverse molecular subtypes, including the classical/progenitor and basal-like/squamous subtypes, each exhibiting distinct characteristics, with the latter known for its aggressiveness. We employed an integrative approach combining transcriptome and metabolome analyses to pinpoint potential genes contributing to the basal-like/squamous subtype differentiation. Applying this approach to our NCI-UMD-German and a validation cohort, we identified LIM Domain Only 3 (LMO3), a transcription co-factor, as a candidate suppressor of the basal-like/squamous subtype. Reduced LMO3 expression was significantly associated with higher pathological grade, advanced disease stage, induction of the basal-like/squamous subtype and decreased survival among PDAC patients. In vitro experiments demonstrated that LMO3 transgene expression inhibited PDAC cell proliferation and migration/invasion, concurrently downregulating the basal-like/squamous gene signature. Metabolome analysis of patient tumors and PDAC cells revealed a metabolic program linked to elevated LMO3 and the classical/progenitor subtype, characterized by enhanced lipogenesis and suppressed amino acid metabolism. Notably, glycerol 3-phosphate (G3P) levels positively correlated with LMO3 expression and associated with improved patient survival. Furthermore, glycerol-3-phosphate dehydrogenase 1 (GPD1), a crucial enzyme in G3P synthesis, showed upregulation in LMO3-high and classical/progenitor PDAC, suggesting its potential role in mitigating disease aggressiveness. Collectively, our findings suggest that heightened LMO3 expression reduces transcriptome and metabolome characteristics indicative of basal-like/squamous tumors with decreased disease aggressiveness in PDAC patients. The observations describe LMO3 as a candidate for diagnostic and therapeutic targeting in PDAC.</p>","PeriodicalId":9446,"journal":{"name":"Carcinogenesis","volume":" ","pages":"475-486"},"PeriodicalIF":3.3,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11229528/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139746100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CarcinogenesisPub Date : 2024-07-08DOI: 10.1093/carcin/bgae017
Han-Bing Li, Di Wang, Yue Zhang, Di Shen, Yi-Qun Che
{"title":"Long noncoding RNA XIST: a novel independent prognostic biomarker for patients with ABC-DLBCL receiving R-CHOP treatment.","authors":"Han-Bing Li, Di Wang, Yue Zhang, Di Shen, Yi-Qun Che","doi":"10.1093/carcin/bgae017","DOIUrl":"10.1093/carcin/bgae017","url":null,"abstract":"<p><p>Approximately one-third of activated B-cell-like diffuse large B-cell lymphoma (ABC-DLBCL) cases were unresponsive to standard first-line therapy; thus, identifying biomarkers to evaluate therapeutic efficacy and assessing the emergence of drug resistance is crucial. Through early-stage screening, long noncoding RNA (lncRNA) X-inactive specific transcript (XIST) was found to be correlated with the R-CHOP treatment response. This study aimed to clarify the characteristics of XIST in ABC-DLBCL. The expression level of XIST in 161 patients with ABC-DLBCL receiving R-CHOP therapy was examined via RNA in situ hybridization, and the association between XIST expression and clinicopathological features, treatment response and prognosis was analyzed in the study cohort and validated in the Gene Expression Omnibus cohort. Cell biological experiments and bioinformatics analyses were conducted to reveal aberrant signaling. The proportion of complete response in patients with high XIST expression was lower than that in patients with low XIST expression (53.8% versus 77.1%) (P = 0.002). High XIST expression was remarkably associated with the characteristics of tumor progression and was an independent prognostic element for overall survival (P = 0.039) and progression-free survival (P = 0.027) in ABC-DLBCL. XIST was proven to be involved in m6A-related methylation and ATF6-associated autophagy. XIST knockdown repressed ABC-DLBCL cellular proliferation by regulating Raf/MEK/ERK signaling. High XIST expression was associated with ABC-DLBCL tumorigenesis and development and contributed to R-CHOP treatment resistance. XIST may be a promising signal to predict ABC-DLBCL prognosis.</p>","PeriodicalId":9446,"journal":{"name":"Carcinogenesis","volume":" ","pages":"500-509"},"PeriodicalIF":3.3,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139995721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CarcinogenesisPub Date : 2024-06-10DOI: 10.1093/carcin/bgae026
Meihong Yao, Hu Chen, Zui Chen, Yingying Wang, Dongliang Shi, Dan Wu, Wen Li, Jianping Huang, Guizhen Chen, Qiaoling Zheng, Zhengtao Ye, Chenxin Zheng, Yinghong Yang
{"title":"Genomic and transcriptomic significance of multiple primary lung cancers detected by next-generation sequencing in clinical settings.","authors":"Meihong Yao, Hu Chen, Zui Chen, Yingying Wang, Dongliang Shi, Dan Wu, Wen Li, Jianping Huang, Guizhen Chen, Qiaoling Zheng, Zhengtao Ye, Chenxin Zheng, Yinghong Yang","doi":"10.1093/carcin/bgae026","DOIUrl":"10.1093/carcin/bgae026","url":null,"abstract":"<p><p>Effective diagnosis and understanding of the mechanism of intrapulmonary metastasis (IM) from multiple primary lung cancers (MPLC) aid clinical management. However, the actual detection panels used in the clinic are variable. Current research on tumor microenvironment (TME) of MPLC and IM is insufficient. Therefore, additional investigation into the differential diagnosis and discrepancies in TME between two conditions is crucial. Two hundred and fourteen non-small cell lung cancer patients with multiple tumors were enrolled and 507 samples were subjected to DNA sequencing (NGS 10). Then, DNA and RNA sequencing (master panel) were performed on the specimens from 32 patients, the TME profiles between tumors within each patient and across patients and the differentially expressed genes were compared. Four patients were regrouped with NGS 10 results. Master panel resolved the classifications of six undetermined patients. The TME in MPLC exhibited a high degree of infiltration by natural killer (NK) cells, CD56dim NK cells, endothelial cells, etc., P < 0.05. Conversely, B cells, activated B cells, regulatory cells, immature dendritic cells, etc., P < 0.001, were heavily infiltrated in the IM. NECTIN4 and LILRB4 mRNA were downregulated in the MPLC (P < 0.0001). Additionally, NECTIN4 (P < 0.05) and LILRB4 were linked to improved disease-free survival in the MPLC. In conclusion, IM is screened from MPLC by pathology joint NGS 10 detections, followed by a large NGS panel for indistinguishable patients. A superior prognosis of MPLC may be associated with an immune-activating TME and the downregulation of NECTIN4 and LILRB4 considered as potential drug therapeutic targets.</p>","PeriodicalId":9446,"journal":{"name":"Carcinogenesis","volume":" ","pages":"387-398"},"PeriodicalIF":4.7,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140849515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CarcinogenesisPub Date : 2024-06-10DOI: 10.1093/carcin/bgae006
Juanjuan Yu, Yang Yang, Rongfang Zhou, Yanfang Tao, Frank Zhu, Wanyan Jiao, Zimu Zhang, Tongting Ji, Tiandan Li, Fang Fang, Yi Xie, Di Wu, Ran Zhuo, Xiaolu Li, Yanling Chen, Hongli Yin, Jianwei Wang, Jian Pan
{"title":"The BET inhibitor GNE-987 effectively induces anti-cancer effects in T-cell acute lymphoblastic leukemia by targeting enhancer regulated genes.","authors":"Juanjuan Yu, Yang Yang, Rongfang Zhou, Yanfang Tao, Frank Zhu, Wanyan Jiao, Zimu Zhang, Tongting Ji, Tiandan Li, Fang Fang, Yi Xie, Di Wu, Ran Zhuo, Xiaolu Li, Yanling Chen, Hongli Yin, Jianwei Wang, Jian Pan","doi":"10.1093/carcin/bgae006","DOIUrl":"10.1093/carcin/bgae006","url":null,"abstract":"<p><p>T-cell acute lymphoblastic leukemia (T-ALL) is a highly aggressive hematologic malignancy originating from T progenitor cells. It accounts for 15% of childhood and 25% of adult ALL cases. GNE-987 is a novel chimeric molecule developed using proteolysis-targeting chimeras (PROTAC) technology for targeted therapy. It consists of a potent inhibitor of the bromodomain and extraterminal (BET) protein, as well as the E3 ubiquitin ligase Von Hippel-Lindau (VHL), which enables the effective induction of proteasomal degradation of BRD4. Although GNE-987 has shown persistent inhibition of cell proliferation and apoptosis, its specific antitumor activity in T-ALL remains unclear. In this study, we aimed to investigate the molecular mechanisms underlying the antitumor effect of GNE-987 in T-ALL. To achieve this, we employed technologies including RNA sequencing (RNA-seq), chromatin immunoprecipitation sequencing (ChIP-seq) and CUT&Tag. The degradation of BET proteins, specifically BRD4, by GNE-987 has a profound impact on T-ALL cell. In in vivo experiments, sh-BRD4 lentivirus reduced T-ALL cell proliferation and invasion, extending the survival time of mice. The RNA-seq and CUT&Tag analyses provided further insights into the mechanism of action of GNE-987 in T-ALL. These analyses revealed that GNE-987 possesses the ability to suppress the expression of various genes associated with super-enhancers (SEs), including lymphoblastic leukemia 1 (LCK). By targeting these SE-associated genes, GNE-987 effectively inhibits the progression of T-ALL. Importantly, SE-related oncogenes like LCK were identified as critical targets of GNE-987. Based on these findings, GNE-987 holds promise as a potential novel candidate drug for the treatment of T-ALL.</p>","PeriodicalId":9446,"journal":{"name":"Carcinogenesis","volume":" ","pages":"424-435"},"PeriodicalIF":4.7,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139671370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dietary phytoestrogen intake and ovarian cancer risk: a prospective study in the prostate, lung, colorectal and ovarian (PLCO) cohort.","authors":"Yizuo Song, Huijun Huang, Mingmin Jin, Binwei Cheng, Shanshan Wang, Xinjun Yang, Xiaoli Hu","doi":"10.1093/carcin/bgae015","DOIUrl":"10.1093/carcin/bgae015","url":null,"abstract":"<p><p>Estrogen plays a crucial role in ovarian tumorigenesis. Phytoestrogens (PEs) are a type of daily dietary nutrient for humans and possess a mild estrogenic characteristic. This study aimed to assess the correlation of the consumption of dietary PEs with ovarian cancer risk using data in the prostate, lung, colorectal and ovarian (PLCO) cancer screening trial. Participants were enrolled in PLCO from 1993 to 2001. Hazard ratios (HR) and 95% confidence intervals (CI) were utilized to determine the association between the intake of PEs and ovarian cancer occurrence, which were calculated by the Cox proportional hazards regression analysis. In total, 24 875 participants were identified upon completion of the initial dietary questionnaire (DQX). Furthermore, the analysis also included a total of 45 472 women who filled out the diet history questionnaire (DHQ). Overall, after adjustment for confounders, the dietary intake of total PEs was significantly associated with the risk of ovarian cancer in the DHQ group (HRQ4vsQ1 = 0.69, 95% CI: 0.50-0.95; P for trend = 0.066). Especially, individuals who consumed the highest quartile of isoflavones were found to have a decreased risk of ovarian cancer in the DHQ group (HRQ4vsQ1 = 0.68, 95% CI: 0.50-0.94; P for trend = 0.032). However, no such significant associations were observed for the DQX group. In summary, this study suggests that increased dietary intake of total PEs especially isoflavones was linked with a lower risk for developing ovarian cancer. More research is necessary to validate the findings and explore the potential mechanisms.</p>","PeriodicalId":9446,"journal":{"name":"Carcinogenesis","volume":" ","pages":"378-386"},"PeriodicalIF":4.7,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11164104/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139905080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CarcinogenesisPub Date : 2024-06-10DOI: 10.1093/carcin/bgae022
Daren Wang, Ping Pei, Fortune Shea, Richard Spinney, Albert Chang, Joerg Lahann, Susan R Mallery
{"title":"Growth modulatory effects of fenretinide encompass keratinocyte terminal differentiation: a favorable outcome for oral squamous cell carcinoma chemoprevention.","authors":"Daren Wang, Ping Pei, Fortune Shea, Richard Spinney, Albert Chang, Joerg Lahann, Susan R Mallery","doi":"10.1093/carcin/bgae022","DOIUrl":"10.1093/carcin/bgae022","url":null,"abstract":"<p><p>Oral squamous cell carcinoma (OSCC) is worldwide health problem associated with high morbidity and mortality. From both the patient and socioeconomic perspectives, prevention of progression of premalignant oral intraepithelial neoplasia (OIN) to OSCC is clearly the preferable outcome. Optimal OSCC chemopreventives possess a variety of attributes including high tolerability, bioavailability, efficacy and preservation of an intact surface epithelium. Terminal differentiation, which directs oral keratinocytes leave the proliferative pool to form protective cornified envelopes, preserves the protective epithelial barrier while concurrently eliminating growth-aberrant keratinocytes. This study employed human premalignant oral keratinocytes and an OSCC cell line to evaluate the differentiation-inducing capacity of the synthetic retinoid, fenretinide (4HPR). Full-thickness oral mucosal explants were evaluated for proof of concept differentiation studies. Results of this study characterize the ability of 4HPR to fulfill all requisite components for keratinocyte differentiation, i.e. nuclear import via binding to cellular RA binding protein-II (molecular modeling), binding to and subsequent activation of retinoic acid nuclear receptors (receptor activation assays), increased expression and translation of genes associated with keratinocyte differentiation [Reverse transcription polymerase chain reaction (RT-PCR), immunoblotting] upregulation of a transglutaminase enzyme essential for cornified envelope formation (transglutaminase 3, functional assay) and augmentation of terminal differentiation in human oral epithelial explants (image-analyses quantified corneocyte desquamation). These data build upon the chemoprevention repertoire of 4HPR that includes function as a small molecule kinase inhibitor and inhibition of essential mechanisms necessary for basement membrane invasion. An upcoming clinical trial, which will assess whether a 4HPR-releasing mucoadhesive patch induces histologic, clinical and molecular regression in OIN lesions, will provide essential clinical insights.</p>","PeriodicalId":9446,"journal":{"name":"Carcinogenesis","volume":" ","pages":"436-449"},"PeriodicalIF":3.3,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11519021/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140101075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"tRF-29-79 regulates lung adenocarcinoma progression through mediating glutamine transporter SLC1A5.","authors":"Yuanjian Shi, Zehao Pan, Yipeng Feng, Qinyao Zhou, Qinglin Wang, Hui Wang, Gaochao Dong, Wenjie Xia, Feng Jiang","doi":"10.1093/carcin/bgae010","DOIUrl":"10.1093/carcin/bgae010","url":null,"abstract":"<p><p>In recent decades, considerable evidence has emerged indicating the involvement of tRNA-derived fragments (tRFs) in cancer progression through various mechanisms. However, the biological effects and mechanisms of tRFs in lung adenocarcinoma (LUAD) remain unclear. In this study, we screen out tRF-29-79, a 5'-tRF derived from tRNAGlyGCC, through profiling the tRF expressions in three pairs of LUAD tissues. We show that tRF-29-79 is downregulated in LUAD and downregulation of tRF-29-79 is associated with poorer prognosis. In vivo and in vitro assay reveal that tRF-29-79 inhibits proliferation, migration and invasion of LUAD cells. Mechanistically, we discovered that tRF-29-79 interacts with the RNA-binding protein PTBP1 and facilitates the transportation of PTBP1 from nucleus to cytoplasm, which regulates alternative splicing in the 3' untranslated region (UTR) of SLC1A5 pre-mRNA. Given that SLC1A5 is a core transporter of glutamine, we proved that tRF-29-79 mediate glutamine metabolism of LUAD through affecting the stability of SLC1A5 mRNA, thus exerts its anticancer function. In summary, our findings uncover the novel mechanism that tRF-29-79 participates in glutamine metabolism through interacting with PTBP1 and regulating alternative splicing in the 3' UTR of SLC1A5 pre-mRNA.</p>","PeriodicalId":9446,"journal":{"name":"Carcinogenesis","volume":" ","pages":"409-423"},"PeriodicalIF":4.7,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139746174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CarcinogenesisPub Date : 2024-06-10DOI: 10.1093/carcin/bgae008
Youyi Liu, Boshi Wang, Yang Cheng, Yipeng Fang, Yingjian Hou, Yong Mao, Xiaomin Wu, Donglin Jiang, Youzhao He, Cheng Jin
{"title":"ASIC1 promotes migration and invasion of hepatocellular carcinoma via the PRKACA/AP-1 signaling pathway.","authors":"Youyi Liu, Boshi Wang, Yang Cheng, Yipeng Fang, Yingjian Hou, Yong Mao, Xiaomin Wu, Donglin Jiang, Youzhao He, Cheng Jin","doi":"10.1093/carcin/bgae008","DOIUrl":"10.1093/carcin/bgae008","url":null,"abstract":"<p><p>Hepatocellular carcinoma (HCC) exhibits a high mortality rate due to its high invasion and metastatic nature, and the acidic microenvironment plays a pivotal role. Acid-sensing ion channel 1 (ASIC1) is upregulated in HCC tissues and facilitates tumor progression in a pH-dependent manner, while the specific mechanisms therein remain currently unclear. Herein, we aimed to investigate the underlying mechanisms by which ASIC1 contributes to the development of HCC. Using bioinformatics analysis, we found a significant association between ASIC1 expression and malignant transformation of HCC, such as poor prognosis, metastasis and recurrence. Specifically, ASIC1 enhanced the migration and invasion capabilities of Li-7 cells in the in vivo experiment using an HCC lung metastasis mouse model, as well as in the in vitro experiments such as wound healing assay and Transwell assay. Furthermore, our comprehensive gene chip and molecular biology experiments revealed that ASIC1 promoted HCC migration and invasion by activating the PRKACA/AP-1 signaling pathway. Our findings indicate that targeting ASIC1 could have therapeutic potential for inhibiting HCC progression.</p>","PeriodicalId":9446,"journal":{"name":"Carcinogenesis","volume":" ","pages":"399-408"},"PeriodicalIF":4.7,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139671369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}