Zuber Khan, Sidharth Mehan, Mohd Anas Saifi, Ghanshyam Das Gupta, Acharan S Narula, Reni Kalfin
{"title":"Proton Pump Inhibitors and Cognitive Health: Review on Unraveling the Dementia Connection and Co-morbid Risks.","authors":"Zuber Khan, Sidharth Mehan, Mohd Anas Saifi, Ghanshyam Das Gupta, Acharan S Narula, Reni Kalfin","doi":"10.2174/0115672050289946240223050737","DOIUrl":"10.2174/0115672050289946240223050737","url":null,"abstract":"<p><p>Dementia, an international health issue distinguished by the impairment of daily functioning due to cognitive decline, currently affects more than 55 million people worldwide, with the majority residing in low-income and middle-income countries. Globally, dementia entails significant economic burdens in 2019, amounting to a cost of 1.3 trillion US dollars. Informal caregivers devote considerable hours to providing care for those affected. Dementia imposes a greater caregiving and disability-adjusted life-year burden on women. A recent study has established a correlation between prolonged Proton Pump Inhibitor (PPI) usage and dementia, in addition to other neurodegenerative conditions. PPIs are frequently prescribed to treat peptic ulcers and GERD (gastroesophageal reflux disease) by decreasing stomach acid secretion. They alleviate acid-related symptoms through the inhibition of acid-secreting H<sup>+</sup>-K<sup>+</sup> ATPase. In a number of observational studies, cognitive decline and dementia in the elderly have been linked to the use of PPIs. The precise mechanism underlying this relationship is unknown. These drugs might also alter the pH of brain cells, resulting in the accumulation of amyloid-beta (Aβ) peptides and the development of Alzheimer's disease (AD). Despite the compelling evidence supporting the association of PPIs with dementia, the results of studies remain inconsistent. The absence of a correlation between PPI use and cognitive decline in some studies emphasizes the need for additional research. Chronic PPI use can conceal underlying conditions, including cancer, celiac disease, vitamin B12 deficiency, and renal injury, highlighting dementia risk and the need for further investigations on cognitive health.</p>","PeriodicalId":94309,"journal":{"name":"Current Alzheimer research","volume":" ","pages":"739-757"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11107432/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139998798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaosen Ouyang, Roberto Collu, Gloria A Benavides, Ran Tian, Victor Darley-Usmar, Weiming Xia, Jianhua Zhang
{"title":"ROCK Inhibitor Fasudil Attenuates Neuroinflammation and Associated Metabolic Dysregulation in the Tau Transgenic Mouse Model of Alzheimer's Disease.","authors":"Xiaosen Ouyang, Roberto Collu, Gloria A Benavides, Ran Tian, Victor Darley-Usmar, Weiming Xia, Jianhua Zhang","doi":"10.2174/0115672050317608240531130204","DOIUrl":"10.2174/0115672050317608240531130204","url":null,"abstract":"<p><strong>Background: </strong>The pathological manifestations of Alzheimer's disease (AD) include not only brain amyloid β protein (Aβ) containing neuritic plaques and hyperphosphorylated tau (p-- tau) containing neurofibrillary tangles but also microgliosis, astrocytosis, and neurodegeneration mediated by metabolic dysregulation and neuroinflammation.</p><p><strong>Methods: </strong>While antibody-based therapies targeting Aβ have shown clinical promise, effective therapies targeting metabolism, neuroinflammation, and p-tau are still an urgent need. Based on the observation that Ras homolog (Rho)-associated kinases (ROCK) activities are elevated in AD, ROCK inhibitors have been explored as therapies in AD models. This study determines the effects of fasudil, a ROCK inhibitor, on neuroinflammation and metabolic regulation in the P301S tau transgenic mouse line PS19 that models neurodegenerative tauopathy and AD. Using daily intraperitoneal (i.p.) delivery of fasudil in PS19 mice, we observed a significant hippocampal-specific decrease of the levels of phosphorylated tau (pTau Ser202/Thr205), a decrease of GFAP+ cells and glycolytic enzyme Pkm1 in broad regions of the brain, and a decrease in mitochondrial complex IV subunit I in the striatum and thalamic regions.</p><p><strong>Results: </strong>Although no overt detrimental phenotype was observed, mice dosed with 100 mg/kg/day for 2 weeks exhibited significantly decreased mitochondrial outer membrane and electron transport chain (ETC) protein abundance, as well as ETC activities.</p><p><strong>Conclusion: </strong>Our results provide insights into dose-dependent neuroinflammatory and metabolic responses to fasudil and support further refinement of ROCK inhibitors for the treatment of AD.</p>","PeriodicalId":94309,"journal":{"name":"Current Alzheimer research","volume":" ","pages":"183-200"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141444016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"hdWGCNA and Cellular Communication Identify Active NK Cell Subtypes in Alzheimer's Disease and Screen for Diagnostic Markers through Machine Learning.","authors":"Guobin Song, Haoyang Wu, Haiqing Chen, Shengke Zhang, Qingwen Hu, Haotian Lai, Claire Fuller, Guanhu Yang, Hao Chi","doi":"10.2174/0115672050314171240527064514","DOIUrl":"10.2174/0115672050314171240527064514","url":null,"abstract":"<p><strong>Background: </strong>Alzheimer's disease (AD) is a recognized complex and severe neurodegenerative disorder, presenting a significant challenge to global health. Its hallmark pathological features include the deposition of β-amyloid plaques and the formation of neurofibrillary tangles. Given this context, it becomes imperative to develop an early and accurate biomarker model for AD diagnosis, employing machine learning and bioinformatics analysis.</p><p><strong>Methods: </strong>In this study, single-cell data analysis was employed to identify cellular subtypes that exhibited significant differences between the diseased and control groups. Following the identification of NK cells, hdWGCNA analysis and cellular communication analysis were conducted to pinpoint NK cell subset with the most robust communication effects. Subsequently, three machine learning algorithms-LASSO, Random Forest, and SVM-RFE-were employed to jointly screen for NK cell subset modular genes highly associated with AD. A logistic regression diagnostic model was then designed based on these characterized genes. Additionally, a protein-protein interaction (PPI) networks of model genes was established. Furthermore, unsupervised cluster analysis was conducted to classify AD subtypes based on the model genes, followed by the analysis of immune infiltration in the different subtypes. Finally, Spearman correlation coefficient analysis was utilized to explore the correlation between model genes and immune cells, as well as inflammatory factors.</p><p><strong>Results: </strong>We have successfully identified three genes (RPLP2, RPSA, and RPL18A) that exhibit a high association with AD. The nomogram based on these genes provides practical assistance in diagnosing and predicting patients' outcomes. The interconnected genes screened through PPI are intricately linked to ribosome metabolism and the COVID-19 pathway. Utilizing the expression of modular genes, unsupervised cluster analysis unveiled three distinct AD subtypes. Particularly noteworthy is subtype C3, characterized by high expression, which correlates with immune cell infiltration and elevated levels of inflammatory factors. Hence, it can be inferred that the establishment of an immune environment in AD patients is closely intertwined with the heightened expression of model genes.</p><p><strong>Conclusion: </strong>This study has not only established a valuable diagnostic model for AD patients but has also delved deeply into the pivotal role of model genes in shaping the immune environment of individuals with AD. These findings offer crucial insights into early AD diagnosis and patient management strategies.</p>","PeriodicalId":94309,"journal":{"name":"Current Alzheimer research","volume":" ","pages":"120-140"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141162977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shadi Farabi Maleki, Milad Yousefi, Navid Sobhi, Ali Jafarizadeh, Roohallah Alizadehsani, Juan Manuel Gorriz-Saez
{"title":"Artificial Intelligence in Eye Movements Analysis for Alzheimer's Disease Early Diagnosis.","authors":"Shadi Farabi Maleki, Milad Yousefi, Navid Sobhi, Ali Jafarizadeh, Roohallah Alizadehsani, Juan Manuel Gorriz-Saez","doi":"10.2174/0115672050322607240529075641","DOIUrl":"10.2174/0115672050322607240529075641","url":null,"abstract":"<p><p>As the world's population ages, Alzheimer's disease is currently the seventh most common cause of death globally; the burden is anticipated to increase, especially among middle-class and elderly persons. Artificial intelligence-based algorithms that work well in hospital environments can be used to identify Alzheimer's disease. A number of databases were searched for English- language articles published up until March 1, 2024, that examined the relationships between artificial intelligence techniques, eye movements, and Alzheimer's disease. A novel non-invasive method called eye movement analysis may be able to reflect cognitive processes and identify anomalies in Alzheimer's disease. Artificial intelligence, particularly deep learning, and machine learning, is required to enhance Alzheimer's disease detection using eye movement data. One sort of deep learning technique that shows promise is convolutional neural networks, which need further data for precise classification. Nonetheless, machine learning models showed a high degree of accuracy in this context. Artificial intelligence-driven eye movement analysis holds promise for enhancing clinical evaluations, enabling tailored treatment, and fostering the development of early and precise Alzheimer's disease diagnosis. A combination of artificial intelligence-based systems and eye movement analysis can provide a window for early and non-invasive diagnosis of Alzheimer's disease. Despite ongoing difficulties with early Alzheimer's disease detection, this presents a novel strategy that may have consequences for clinical evaluations and customized medication to improve early and accurate diagnosis.</p>","PeriodicalId":94309,"journal":{"name":"Current Alzheimer research","volume":" ","pages":"155-165"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141263035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Arka De, Tusar Kanti Mishra, Sameeksha Saraf, Balakrushna Tripathy, Shiva Shankar Reddy
{"title":"A Review on the Use of Modern Computational Methods in Alzheimer's Disease-Detection and Prediction.","authors":"Arka De, Tusar Kanti Mishra, Sameeksha Saraf, Balakrushna Tripathy, Shiva Shankar Reddy","doi":"10.2174/0115672050301514240307071217","DOIUrl":"10.2174/0115672050301514240307071217","url":null,"abstract":"<p><p>Discoveries in the field of medical sciences are blooming rapidly at the cost of voluminous efforts. Presently, multidisciplinary research activities have been especially contributing to catering cutting-edge solutions to critical problems in the domain of medical sciences. The modern age computing resources have proved to be a boon in this context. Effortless solutions have become a reality, and thus, the real beneficiary patients are able to enjoy improved lives. One of the most emerging problems in this context is Alzheimer's disease, an incurable neurological disorder. For this, early diagnosis is made possible with benchmark computing tools and schemes. These benchmark schemes are the results of novel research contributions being made intermittently in the timeline. In this review, an attempt is made to explore all such contributions in the past few decades. A systematic review is made by categorizing these contributions into three folds, namely, First, Second, and Third Generations. However, priority is given to the latest ones as a handful of literature reviews are already available for the classical ones. Key contributions are discussed vividly. The objectives set for this review are to bring forth the latest discoveries in computing methodologies, especially those dedicated to the diagnosis of Alzheimer's disease. A detailed timeline of the contributions is also made available. Performance plots for certain key contributions are also presented for better graphical understanding.</p>","PeriodicalId":94309,"journal":{"name":"Current Alzheimer research","volume":" ","pages":"845-861"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140103091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Assessing the Stability of Clusters of Neuropsychiatric Symptoms in Alzheimer's Disease and Mild Cognitive Impairment.","authors":"Sara Scarfo, Yashar Moshfeghi, William J McGeown","doi":"10.2174/0115672050309014240705113444","DOIUrl":"10.2174/0115672050309014240705113444","url":null,"abstract":"<p><strong>Aim: </strong>The aim of the study was to investigate the factors that underpin neuropsychiatric symptoms and how they might evolve over time in people with Mild Cognitive Impairment (MCI) and Alzheimer's disease (AD) dementia.</p><p><strong>Background: </strong>Neuropsychiatric symptoms are psychiatric and behavioural manifestations that occur in people with AD. These are highly prevalent along the continuum of the disease, including at the stage of MCI, as well as before cognitive decline. Various small- and large-scale projects have investigated the underlying factors that underpin these symptoms; however, the identification of clear clusters is still a matter of debate; furthermore, no study has investigated how the clusters might change across the development of AD pathology by comparing different time points.</p><p><strong>Objective: </strong>Our objective was to investigate the factors that underpin neuropsychiatric symptoms in Alzheimer's disease (AD) and Mild Cognitive Impairment (MCI) and to assess how the loadings might differ based on considerations such as the disease stage of the samples.</p><p><strong>Methods: </strong>Data was obtained from the Alzheimer's Disease Neuroimaging Initiative database (adni. loni.usc.edu), using scores from the Neuropsychiatric Inventory, followed up yearly from baseline until month 72. Participant groups included those with MCI or AD dementia, or a mixture of both, with all participants presenting with at least one neuropsychiatric symptom. A series of exploratory Principal Component and Factor (Principal Axis) Analyses were performed using Direct Oblimin rotation.</p><p><strong>Results: </strong>The best-fitting structure was interpreted for each time point. A consistent, unique structure could not be identified, as the factors were unstable over time, both within the MCI and AD groups. However, some symptoms showed a tendency to load on the same factors across most measurements (i.e., agitation with irritability, depression with anxiety, elation with disinhibition, delusions with hallucinations).</p><p><strong>Conclusion: </strong>Although the analyses revealed some degree of co-occurrence of neuropsychiatric symptoms across time points/samples, there was also considerable variation. In the AD group, more discrete syndromes were evident at the early time points, whereas a more complex picture of co-occurring symptoms, with differences likely reflecting disease staging, was seen at later time points. As a clear and distinctive factor structure was not consistently identified across time points/ samples, this highlights the potential importance of sample selection (e.g., disease stage and/or heterogeneity) when studying, for example, the neurobiological underpinnings of neuropsychiatric symptoms.</p>","PeriodicalId":94309,"journal":{"name":"Current Alzheimer research","volume":" ","pages":"258-275"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141636392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aline Marileen Wiegersma, Amber Boots, Emma F van Bussel, Birgit I Lissenberg-Witte, Mark M J Nielen, Tessa J Roseboom, Susanne R de Rooij
{"title":"Prenatal Exposure to the 1944-45 Dutch Famine and Risk for Dementia up to Age 75: An Analysis of Primary Care Data.","authors":"Aline Marileen Wiegersma, Amber Boots, Emma F van Bussel, Birgit I Lissenberg-Witte, Mark M J Nielen, Tessa J Roseboom, Susanne R de Rooij","doi":"10.2174/0115672050290699240422050036","DOIUrl":"10.2174/0115672050290699240422050036","url":null,"abstract":"<p><strong>Background: </strong>A poor prenatal environment adversely affects brain development. Studies investigating long-term consequences of prenatal exposure to the 1944-45 Dutch famine have shown that those exposed to famine in early gestation had poorer selective attention, smaller brain volumes, poorer brain perfusion, older appearing brains, and increased reporting of cognitive problems, all indicative of increased dementia risk.</p><p><strong>Objective: </strong>In the current population-based study, we investigated whether dementia incidence up to age 75 was higher among individuals who had been prenatally exposed to famine.</p><p><strong>Methods: </strong>We included men (n=6,714) and women (n=7,051) from the Nivel Primary Care Database who had been born in seven cities affected by the Dutch famine. We used Cox regression to compare dementia incidence among individuals exposed to famine during late (1,231), mid (1,083), or early gestation (601) with those unexposed (born before or conceived after the famine).</p><p><strong>Results: </strong>We did not observe differences in dementia incidence for those exposed to famine in mid or early gestation compared to those unexposed. Men and women exposed to famine in late gestation had significantly lower dementia rates compared to unexposed individuals (HR 0.52 (95%CI 0.30-0.89)). Sex-specific analyses showed a lower dementia rate in women exposed to famine in late gestation (HR 0.39 (95%CI 0.17-0.86)) but not in men (HR 0.68 (95%CI 0.33-1.41)).</p><p><strong>Conclusion: </strong>Although prenatal exposure to the Dutch famine has previously been associated with measures of accelerated brain aging, the present population-based study did not show increased dementia incidence up to age 75 in those exposed to famine during gestation.</p>","PeriodicalId":94309,"journal":{"name":"Current Alzheimer research","volume":" ","pages":"101-108"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140856917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multimodal Gamma Stimulation Improves Activity but not Memory in Aged Tgf344-AD Rats.","authors":"J H Bentley, J I Broussard","doi":"10.2174/0115672050281956240228075849","DOIUrl":"10.2174/0115672050281956240228075849","url":null,"abstract":"<p><strong>Background: </strong>Multimodal sensory gamma stimulation is a treatment approach for Alzheimers disease that has been shown to improve pathology and memory in transgenic mouse models of Alzheimer's. Because rats are closer to humans in evolution, we tested the hypothesis that the transgenic rat line bearing human APP and PS1, line TgF344-AD, would be a good supplemental candidate to test the efficacy of this treatment. Current therapy approaches under investigation seek to utilize the immune response to minimize or degrade the accumulation of β-amyloid plaque load in mouse models designed to overexpress Aβ. However, many of these models lack some of the hallmarks of Alzheimer's disease, such as hyperphosphorylated tau and neuronal cell loss. The TgF344-AD transgenic rat model is a good candidate to bridge the gap between mouse models and clinical efficacy in humans.</p><p><strong>Objective: </strong>The objective of this study was to use multimodal gamma stimulation at light and auditory modalities simultaneously to test whether this enhances memory performance as measured by the object location task and the spontaneous alternation task.</p><p><strong>Methods: </strong>In our study, we designed and built a low-cost, easy-to-construct multimodal light and sound gamma stimulator. Our gamma stimulation device was built using an Arduino microcontroller, which drives lights and a speaker at the gamma frequency. We have included in this paper our device's parts, hardware design, and software architecture for easy reproducibility. We then performed an experiment to test the effect of multimodal gamma stimulation on the cognitive performance of fourteen-month-old TgF344-AD rats. Rats were randomly assigned to either an experimental group that received gamma stimulation or a control group that did not. Performance in a Novel Object Location (NOL) task and spontaneous alternation task was evaluated in both groups before and after the treatment.</p><p><strong>Results: </strong>Multimodal gamma stimulation did not improve memory compared to unstimulated TgF344-AD rats. However, the gamma-stimulated rats did spend significantly more time exploring objects in the novel location task than the unstimulated rats. In the spontaneous alternation task, gamma-stimulated rats exhibited significantly greater exploratory activity than unstimulated controls.</p><p><strong>Conclusion: </strong>Multimodal gamma stimulation did not enhance memory performance in the object location task or the spontaneous alternation task. However, in both tasks, the treatment group had improved measures of exploratory activity relative to the untreated group. We conclude that several limitations could have contributed to this mixed effect, including aging complications, different animal models, or light cycle effects.</p>","PeriodicalId":94309,"journal":{"name":"Current Alzheimer research","volume":" ","pages":"769-777"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140041276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Drug Design for Alzheimer's Disease: Biologics <i>vs</i>. Small Molecules.","authors":"Donald F Weaver","doi":"10.2174/0115672050301583240307114452","DOIUrl":"10.2174/0115672050301583240307114452","url":null,"abstract":"<p><p>There shall probably be no \"magic bullet\" for Alzheimer's; rather, we should be pursuing a \"magic shotgun blast\" that will target multiple complementary therapeutic receptors. Although protein misfolding/oligomerization will probably be one of these targets, this alone is insufficient and will require the co-administration of other therapeutic entities engaging targets, such as immunopathy, gliopathy, mitochondriopathy, synaptotoxicity or others. Although polypharmacy is emerging as the preferred therapeutic route, many questions remain unanswered. Should this be a cocktail of biologics, a concoction of small molecules, or a judicious combination of both? Biologics and small molecule drugs display both strengths and weaknesses. When addressing a disease as complex and globally important as Alzheimer's, there should be room for the continuing development of both of these therapeutic classes. Each has much to offer, and when used with their advantages and disadvantages in clear focus, an ultimate solution will probably require contributions from both.</p>","PeriodicalId":94309,"journal":{"name":"Current Alzheimer research","volume":" ","pages":"821-826"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140103092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hui Chen, Yihong Ding, Liyan Huang, Wansi Zhong, Xiaojun Lin, Baoyue Zhang, Yan Zheng, Xin Xu, Min Lou, Changzheng Yuan
{"title":"The Association of Allergy-Related and Non-Allergy-Related Olfactory Impairment with Cognitive Function in Older Adults: Two Cross- Sectional Studies.","authors":"Hui Chen, Yihong Ding, Liyan Huang, Wansi Zhong, Xiaojun Lin, Baoyue Zhang, Yan Zheng, Xin Xu, Min Lou, Changzheng Yuan","doi":"10.2174/0115672050284179240215052257","DOIUrl":"10.2174/0115672050284179240215052257","url":null,"abstract":"<p><strong>Background: </strong>Evidence on the association of Olfactory Impairment (OI) with age-related cognitive decline is inconclusive, and the potential influence of allergy remains unclear.</p><p><strong>Objective: </strong>We aimed to evaluate the cross-sectional associations of allergy-related and non-allergy- related OI to cognitive function.</p><p><strong>Methods: </strong>We included 2,499 participants from the Health and Retirement Study (HRS)-Harmonized Cognitive Assessment Protocol (HCAP) sub-study and 1,086 participants from the English Longitudinal Study of Ageing (ELSA)-HCAP. The Olfactory Function Field Exam (OFFE) using Sniffin' Stick odor pens was used to objectively assess olfactory function and an olfactory score <6/11 indicated OI. Mini-Mental Status Examination (MMSE) was used to assess global cognitive function and define cognitive impairment (<24/30). A neuropsychologic battery was used to assess five cognitive domains.</p><p><strong>Results: </strong>Compared to non-OI participants, individuals with OI had lower MMSE z-score [β<sub>HRS</sub> = -0.33, 95% Confidence Interval (CI): -0.41 to -0.24; β<sub>ELSA</sub> = -0.31, -0.43 to -0.18] and higher prevalence of cognitive impairment (Prevalence Ratio (PR)HRS = 1.46, 1.06 to 2.01; PR<sub>ELSA</sub> = 1.63, 1.26 to 2.11). The associations were stronger for non-allergy-related OI (β<sub>HRS</sub> = -0.36; β<sub>ELSA</sub> = -0.34) than for allergy-related OI (β<sub>HRS</sub> = -0.26; β<sub>ELSA</sub> = 0.13). Similar associations were observed with domain- specific cognitive function measures.</p><p><strong>Conclusion: </strong>OI, particularly non-allergy-related OI, was related to poorer cognitive function in older adults. Although the current cross-sectional study is subject to several limitations, such as reverse causality and residual confounding, the findings will provide insights into the OI-cognition association and enlighten future attention to non-allergy-related OI for the prevention of potential cognitive impairment.</p>","PeriodicalId":94309,"journal":{"name":"Current Alzheimer research","volume":" ","pages":"811-820"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139975346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}