Jiaqi Li , Xixue Chen , Xuejun Zhu , Panpan Shang , Mingyue Wang
{"title":"Serum inflammatory biomarkers associated with disease severity and response to dupilumab treatment in bullous pemphigoid: A cluster analysis","authors":"Jiaqi Li , Xixue Chen , Xuejun Zhu , Panpan Shang , Mingyue Wang","doi":"10.1016/j.jdermsci.2024.09.003","DOIUrl":"10.1016/j.jdermsci.2024.09.003","url":null,"abstract":"<div><h3>Background</h3><div>Dupilumab, a novel therapy targeting the T helper (Th) 2-mediated inflammation, is showing clinical benefits in treating bullous pemphigoid (BP). However, limited research investigated the serum biomarkers that reflect the inflammation alterations throughout the disease course.</div></div><div><h3>Objectives</h3><div>To explore the changes of the serum inflammatory biomarkers under dupilumab therapy in BP and establish their correlations with disease severity and clinical outcomes.</div></div><div><h3>Methods</h3><div>This exploratory study evaluated serum samples from 40 patients with BP at baseline, 30 of these patients following 16-week dupilumab therapy, and 20 senior healthy controls. Serum levels of 29 cytokines and chemokines were quantified using the Magnetic Luminex Assay.</div></div><div><h3>Results</h3><div>Two distinct clusters based on serum inflammatory profiles were identified. The first cluster, characterized by elevated levels of inflammatory activation, exhibited worse disease severity and poorer remission outcomes. Following the 16-week dupilumab therapy regimen, a significant suppression of Th2-mediated inflammation in the serum was observed, alongside a relative upregulation of Th1 responses. Patients treated with adjuvant systemic steroids exhibited an enhanced suppression of B cell activating factor compared to those receiving dupilumab alone. Significant correlations were unveiled between Th2 biomarkers and clinical scores, eosinophil counts, and anti-BP180 immunoglobulin G levels. Baseline levels of CCL18, Periostin, interleukin (IL)-6, and IL-16 constitute an optimal combination to distinguish between inflammatory clusters.</div></div><div><h3>Conclusions</h3><div>Cluster analysis of serum inflammatory biomarkers provided novel insights into the heterogeneity of the inflammation profiles in BP. Baseline levels of CCL18, Periostin, IL-6, IL-16 emerged as effective predictors for disease severity and therapy response to dupilumab.</div></div>","PeriodicalId":94076,"journal":{"name":"Journal of dermatological science","volume":"116 1","pages":"Pages 24-33"},"PeriodicalIF":4.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142368049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ferrostatin-1 alleviates skin inflammation and inhibits ferroptosis of neutrophils and CD8+ T cells in allergic contact dermatitis","authors":"Yangying Ke, Ni Lian, Yujie Chen, Yiqun Zhang, Yuancheng Li, Wenlan Zhang, Hui Yu, Heng Gu, Xu Chen","doi":"10.1016/j.jdermsci.2024.08.004","DOIUrl":"10.1016/j.jdermsci.2024.08.004","url":null,"abstract":"<div><h3>Background</h3><div>Ferroptosis is considered as an immunogenic type of regulated cell death and associated with the pathogenesis of inflammatory skin diseases. However, the involvement and function of ferroptosis in allergic contact dermatitis (ACD) remains unknown.</div></div><div><h3>Objective</h3><div>To explore the role of ferroptosis in ACD. To reveal which type of cells develops ferroptosis in ACD.</div></div><div><h3>Methods</h3><div>We detected the key markers of ferroptosis in 1-Chloro-2,4-dinitrochlorobenzene (DNCB)-induced ACD mice model. We applicated ferrostatin-1 (Fer-1) to restrain ferroptosis in ACD mice and then compared the severity of dermatitis and the level of inflammation and ferroptosis in dermis and epidermis, respectively. Keratinocyte-specific <em>Gpx4</em> conditional knockout (cKO) mice were used to investigate the function of keratinocyte ferroptosis in the development of ACD. Single-cell RNA sequencing was conducted to analyze the affection of Fer-1 on different type of cells in ACD.</div></div><div><h3>Results</h3><div>Ferroptosis was involved in DNCB-induced ACD mice. Ferroptosis activation was more remarkable in dermis rather than in epidermis. <em>Gpx4</em> cKO mice showed similar severity of skin dermatitis as control mice. Fer-1 alleviated skin inflammation in mice and reduced ferroptosis in neutrophils and CD8<sup>+</sup> T cells both of which contribute to development of ACD.</div></div><div><h3>Conclusion</h3><div>Ferroptosis was activated in immune cells, especially neutrophils and CD8<sup>+</sup> T cells in DNCB-induced ACD mice. Fer-1 treatment inhibited ferroptosis of neutrophils and CD8<sup>+</sup> T cells and relieved skin damage in ACD mice.</div></div>","PeriodicalId":94076,"journal":{"name":"Journal of dermatological science","volume":"116 1","pages":"Pages 2-13"},"PeriodicalIF":4.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142304943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Huan Zhang , Tao Jia , Delu Che , Bin Peng , Zhaowei Chu , Xiangjin Song , Weihui Zeng , Songmei Geng
{"title":"Corrigendum to “Decreased TET2/5-hmC reduces the integrity of the epidermal barrier via epigenetic dysregulation of filaggrin in psoriatic lesions” [J. Dermatol. Sci. 113 (2024) 103–112]","authors":"Huan Zhang , Tao Jia , Delu Che , Bin Peng , Zhaowei Chu , Xiangjin Song , Weihui Zeng , Songmei Geng","doi":"10.1016/j.jdermsci.2024.07.003","DOIUrl":"10.1016/j.jdermsci.2024.07.003","url":null,"abstract":"","PeriodicalId":94076,"journal":{"name":"Journal of dermatological science","volume":"115 3","pages":"Pages 147-148"},"PeriodicalIF":4.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S092318112400149X/pdfft?md5=4e402410281c340edd24c5104f5dfc9a&pid=1-s2.0-S092318112400149X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141880025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Revealing the UV response of melanocytes in xeroderma pigmentosum group A using patient-derived induced pluripotent stem cells","authors":"Chihiro Takemori , Michiyo Koyanagi-Aoi , Takeshi Fukumoto , Makoto Kunisada , Kazumasa Wakamatsu , Shosuke Ito , Chieko Hosaka , Seiji Takeuchi , Akiharu Kubo , Takashi Aoi , Chikako Nishigori","doi":"10.1016/j.jdermsci.2024.06.004","DOIUrl":"10.1016/j.jdermsci.2024.06.004","url":null,"abstract":"<div><h3>Background</h3><p><span><span>Xeroderma pigmentosum (XP) is characterized by </span>photosensitivity<span><span> that causes pigmentary disorder and predisposition to skin cancers on sunlight-exposed areas due to </span>DNA repair deficiency. Patients with XP group A (XP-A) develop freckle-like pigmented maculae and depigmented maculae within a year unless strict sun-protection is enforced. Although it is crucial to study </span></span>pigment cells (melanocytes: MCs) as disease target cells, establishing MCs in primary cultures is challenging.</p></div><div><h3>Objective</h3><p><span>Elucidation of the disease pathogenesis by comparison between MCs differentiated from XP-A induced pluripotent stem cells (iPSCs) and healthy control iPSCs on the response to </span>UV irradiation.</p></div><div><h3>Methods</h3><p><span>iPSCs were established from a XP-A fibroblasts and differentiated into MCs. Differences in gene expression profiles between XP-A-iPSC-derived melanocytes (XP-A-iMCs) and Healthy control iPSC-derived MCs (HC-iMCs) were analyzed 4 and 12 h after irradiation with 30 or 150 J/m</span><sup>2</sup><span> of UV-B using microarray analysis.</span></p></div><div><h3>Results</h3><p><span><span>XP-A-iMCs expressed SOX10, </span>MITF<span>, and TYR, and showed melanin synthesis<span><span>. Further, XP-A-iMCs showed reduced DNA repair ability. Gene expression profile between XP-A-iMCs and HC-iMCs revealed that, numerous </span>gene probes that were specifically upregulated or downregulated in XP-A-iMCs after 150-J/m</span></span></span><sup>2</sup> of UV-B irradiation did not return to basal levels. Of note that apoptotic pathways were highly upregulated at 150 J/m<sup>2</sup> UV exposure in XP-A-iMCs, and cytokine-related pathways were upregulated even at 30 J/m<sup>2</sup> UV exposure.</p></div><div><h3>Conclusion</h3><p>We revealed for the first time that cytokine-related pathways were upregulated even at low-dose UV exposure in XP-A-iMCs. Disease-specific iPSCs are useful to elucidate the disease pathogenesis and develop treatment strategies of XP.</p></div>","PeriodicalId":94076,"journal":{"name":"Journal of dermatological science","volume":"115 3","pages":"Pages 111-120"},"PeriodicalIF":4.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141736215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Seunghee Lee , Sanseul Kim , Sungjoo Tommy Hwang , Gun-Ho Kim , Ohsang Kwon
{"title":"Cold shock therapy promotes hair growth in association with upregulation of cold-inducible RNA-binding protein and vascular endothelial growth factor","authors":"Seunghee Lee , Sanseul Kim , Sungjoo Tommy Hwang , Gun-Ho Kim , Ohsang Kwon","doi":"10.1016/j.jdermsci.2024.08.001","DOIUrl":"10.1016/j.jdermsci.2024.08.001","url":null,"abstract":"","PeriodicalId":94076,"journal":{"name":"Journal of dermatological science","volume":"115 3","pages":"Pages 141-144"},"PeriodicalIF":4.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142057676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xueshan Du , Delu Che , Bin Peng , Yi Zheng , Yong Hao , Tao Jia , Xinyue Zhang , Songmei Geng
{"title":"Corrigendum to “Dual effect of tacrolimus on mast cell-mediated allergy and inflammation through MAS-related G protein-coupled receptor-X2” [J. Dermatol. Sci. 112 (2023) 128–137]","authors":"Xueshan Du , Delu Che , Bin Peng , Yi Zheng , Yong Hao , Tao Jia , Xinyue Zhang , Songmei Geng","doi":"10.1016/j.jdermsci.2024.06.005","DOIUrl":"10.1016/j.jdermsci.2024.06.005","url":null,"abstract":"","PeriodicalId":94076,"journal":{"name":"Journal of dermatological science","volume":"115 3","pages":"Pages 145-146"},"PeriodicalIF":4.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0923181124001385/pdfft?md5=380049bd5002a76a77f44bf2926f67ec&pid=1-s2.0-S0923181124001385-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141861984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HyeJi Kwon , Jeong Hyeon Lee , Jae Min Yoo , Huonggiang Nguyen , Hongchan An , Sung Eun Chang , Youngsup Song
{"title":"Semaxanib, a VEGF inhibitor, suppresses melanogenesis by modulating CRTC3 independently of VEGF signaling","authors":"HyeJi Kwon , Jeong Hyeon Lee , Jae Min Yoo , Huonggiang Nguyen , Hongchan An , Sung Eun Chang , Youngsup Song","doi":"10.1016/j.jdermsci.2024.07.004","DOIUrl":"10.1016/j.jdermsci.2024.07.004","url":null,"abstract":"<div><h3>Background</h3><p>Dysregulation of melanogenesis contributes to the development of skin hyperpigmentation diseases, which poses a treatment challenge. Following the establishment of CRTC3 screening methods to explore small molecules inhibiting melanogenesis for the topical treatment of hyperpigmentation diseases, we identified a candidate molecule, semaxanib.</p></div><div><h3>Objective</h3><p>To explore the antimelanogenic effects of semaxanib, a vascular endothelial growth factor receptor (VEGFR) 2 inhibitor, for potential applications in hyperpigmentation management and to unravel the role of VEGF signaling in melanocyte biology by investigating mechanism of action of semaxanib.</p></div><div><h3>Methods</h3><p>Mouse-derived spontaneously immortalized melanocytes, B16F10, and normal human primary epidermal melanocytes cells were treated with semaxanib, and cellular responses were assessed using cell viability assays and melanin content measurements. Molecular mechanisms were investigated using transcriptional activity assays, reverse-transcription polymerase chain reaction, and immunoblotting analysis. <em>In vivo</em> studies were conducted using an epidermis-humanized transgenic mouse model and <em>ex vivo</em> human skin tissues.</p></div><div><h3>Results</h3><p>Semaxanib ameliorated melanin content in cultured melanocytes by downregulating the expression of melanogenesis-associated genes by suppressing the CRTC3/microphthalmia-associated transcription factors. Topical application of semaxanib reduced melanin accumulation in the ultraviolet B–stimulated <em>ex vivo</em> human epidermis and tail of K14-stem cell factor transgenic mice. Mechanistically, the antimelanogenic effect induced by semaxanib was associated with SIK2-CRTC3-MITF rather than VEGF signaling in melanocytes.</p></div><div><h3>Conclusion</h3><p>Semaxanib emerges as a promising candidate for the development of therapeutics for hyperpigmentation, potentially working independently of VEGF signaling in human melanocytes.</p></div>","PeriodicalId":94076,"journal":{"name":"Journal of dermatological science","volume":"115 3","pages":"Pages 121-129"},"PeriodicalIF":4.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141845138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}