CNS & neurological disorders drug targets最新文献

筛选
英文 中文
Proposed Hypothesis of TWEAK/Fn14 Receptor Modulation in Autism Spectrum Disorder. 自闭症谱系障碍中 TWEAK/Fn14 受体调节的假说。
CNS & neurological disorders drug targets Pub Date : 2024-10-28 DOI: 10.2174/0118715273330549241015073953
Heena Khan, Vivek Rihal, Amarjot Kaur, Thakur Gurjeet Singh
{"title":"Proposed Hypothesis of TWEAK/Fn14 Receptor Modulation in Autism Spectrum Disorder.","authors":"Heena Khan, Vivek Rihal, Amarjot Kaur, Thakur Gurjeet Singh","doi":"10.2174/0118715273330549241015073953","DOIUrl":"https://doi.org/10.2174/0118715273330549241015073953","url":null,"abstract":"<p><p>Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder with a complex, multiple etiology that is marked by impaired social interaction, communication, and repetitive behaviour. There is presently no pharmaceutical treatment for the core symptoms of ASD, even though the prevalence of ASD is increasing worldwide. Treatment of autism spectrum disorder involves the interaction of numerous signalling pathways, such as the Wnt/beta-catenin pathway, probiotics and kynurenine pathway, PPAR pathway, PI3K-AKT-mTOR pathway, Hedgehog signaling pathway, etc. The scientific literature has revealed TWEAK/Fn14 to not be explored in the autism spectrum disorder. In vitro and in vivo, TWEAK can control a wide range of cellular responses. Recent research has revealed that TWEAK and Fn14 are expressed in the Central Nervous System (CNS) and upregulated in perivascular endothelial cells, astrocytes, neurons, and microglia in response to various stimuli, including cerebral ischemia. This upregulation is followed by cell death and an increase in Blood-brain Barrier (BBB) permeability. The study has revealed that Aurintricarboxylic Acid (ATA) acts as an agent that suppresses TWEAK/Fn14 signaling. Similarly, from the discussion, it has been emphasized that the proposed molecular TWEAK/Fn14 signalling pathway can be considered as a therapeutic approach in the management of autism spectrum disorder.</p>","PeriodicalId":93947,"journal":{"name":"CNS & neurological disorders drug targets","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142549483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In Silico and ADMET Studies of Spiro-Quinazoline Compounds as Acetylcholine Esterase Inhibitors Against Alzheimer's Disease. 螺喹唑啉化合物作为乙酰胆碱酯酶抑制剂防治阿尔茨海默病的硅学和 ADMET 研究。
CNS & neurological disorders drug targets Pub Date : 2024-10-25 DOI: 10.2174/0118715273315412241009092249
Abdulelah Aljuaid, Osama Abdulaziz, Mamdouh Allahyani, Mazen Almehmadi, Abdullah Yahya Abdullah Alzahrani, Shivani Verma, Mohd Yusuf, Mohammad Asif
{"title":"In Silico and ADMET Studies of Spiro-Quinazoline Compounds as Acetylcholine Esterase Inhibitors Against Alzheimer's Disease.","authors":"Abdulelah Aljuaid, Osama Abdulaziz, Mamdouh Allahyani, Mazen Almehmadi, Abdullah Yahya Abdullah Alzahrani, Shivani Verma, Mohd Yusuf, Mohammad Asif","doi":"10.2174/0118715273315412241009092249","DOIUrl":"https://doi.org/10.2174/0118715273315412241009092249","url":null,"abstract":"<p><strong>Background: </strong>Alzheimer's disease (AD) is a prevalent neurodegenerative condition characterized by progressive cognitive decline and memory impairment resulting from the degeneration and death of brain neurons. Acetylcholinesterase (AChE) inhibitors are used in primary pharmacotherapy for numerous neurodegenerative conditions, providing their capacity to modulate acetylcholine levels crucial for cognitive function. Recently, quinazoline derivatives have emerged as a compelling model for neurodegenerative disease treatment, showcasing promising pharmacological features. Their unique structural features and pharmacokinetic profiles have sparked interest in their potential efficacy and safety across diverse neurodegenerative disorders. The exposure of quinazoline derivatives as a potential therapeutic way underscores the imperative for continued research exploration. Their multifaceted mechanisms of action and ability to target various pathways implicated in neurodegeneration offer exciting prospects for developing novel, effective, and well-tolerated treatments. Further investigations into their pharmacological activities and precise therapeutic roles are essential to advance our understanding of neurodegenerative disease pathophysiology and promote the development of modern therapeutic strategies to address this critical medical challenge.</p><p><strong>Methods: </strong>Quinazoline derivatives have gained eminent acetylcholinesterase (AChE) inhibitory activity. Their ability to effectively modulate AChE activity makes them promising candidates for treating neurological disorders, particularly Alzheimer's disease (AD). Their intricate molecular structures confer selectivity and affinity for AChE, offering potential for the development of novel therapeutic agents targeting cholinergic pathways. Hence, in this study, we designed, synthesized, and characterized a series of spiro[cycloalakane-1,2'-quinazoline derivatives (1-6) to assess their possible AChE inhibiting ability using docking into the active sites.</p><p><strong>Results: </strong>The AChE inhibitory potential of spiro[cycloalkane-1,2'-quinazoline derivatives (1-6) was explored via docking studies of the AChE active site. The findings revealed significant inhibitory activity and highlighted the promising nature of these derivatives.</p><p><strong>Conclusion: </strong>The synthesized spiro[cycloalkane-1,2'-quinazoline derivatives (1-6) exhibited their notable potential as AChE inhibitors. The observed significant inhibitory activity suggested that these derivatives warrant further exploration as candidates for developing therapeutic agents in AChE inhibitory pathways. This study emphasizes the relevance of quinazoline derivatives in searching for novel treatments for neurological disorders, particularly associated with cholinergic dysfunction, and they could be a useful alternative therapeutic agent.</p>","PeriodicalId":93947,"journal":{"name":"CNS & neurological disorders drug targets","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142549482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vitamin D and Neurological Health: Unraveling Risk Factors, Disease Progression, and Treatment Potential. 维生素 D 与神经系统健康:揭示风险因素、疾病进展和治疗潜力。
CNS & neurological disorders drug targets Pub Date : 2024-10-22 DOI: 10.2174/0118715273330972241009092828
Abdullah Al Noman, Halima Afrosa, Imanul Kabir Lihu, Onusree Sarkar, Naimur Rahman Nabin, Monty Datta, Rashmi Pathak, Himanshu Sharma
{"title":"Vitamin D and Neurological Health: Unraveling Risk Factors, Disease Progression, and Treatment Potential.","authors":"Abdullah Al Noman, Halima Afrosa, Imanul Kabir Lihu, Onusree Sarkar, Naimur Rahman Nabin, Monty Datta, Rashmi Pathak, Himanshu Sharma","doi":"10.2174/0118715273330972241009092828","DOIUrl":"https://doi.org/10.2174/0118715273330972241009092828","url":null,"abstract":"<p><p>This study explores the complex link between vitamin D and neurological illnesses, focusing on how vitamin D affects possible risk factors, therapeutic applications, and the trajectory of the disease. An epidemiological study has linked vitamin D insufficiency to several neurological conditions, including Parkinson's disease, Alzheimer's disease, and multiple sclerosis. It is hypothesized that immunomodulatory and anti-inflammatory properties of vitamin D contribute to its neuroprotective effects. Two major mechanisms in dementia include neuroinflammation and oxidative stress. Adequate levels of vitamin D have been shown in both animal models and human studies to enhance both clinical outcomes and the duration of illness in those who have it. Other ways that vitamin D contributes to its therapeutic potential include the production of neurotrophic factors, control over neurotransmitter synthesis, and preservation of the blood-brain barrier. Despite the encouraging outcomes, research is still being conducted to determine the optimal dosage and long-term benefits of vitamin D supplementation on brain function. In order to furnish precise directives and clarify the processes behind the neuroprotective impacts of vitamin D, future research must focus on large-scale randomized controlled studies. . This study highlights the significance of maintaining adequate levels of vitamin D as a modifiable risk factor for neurological disorders. Further study is also required to comprehend the possible medical benefits of this vitamin fully.</p>","PeriodicalId":93947,"journal":{"name":"CNS & neurological disorders drug targets","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142514738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Valproic Acid and Celecoxib Enhance the Effect of Temozolomide on Glioblastoma Cells. 丙戊酸和塞来昔布可增强替莫唑胺对胶质母细胞瘤细胞的作用
CNS & neurological disorders drug targets Pub Date : 2024-10-18 DOI: 10.2174/0118715273330268241008220702
Oleg Pak, Alexandra Kosianova, Sergei Zaitsev, Aruna Sharma, Hari Sharma, Igor Bryukhovetskiy
{"title":"Valproic Acid and Celecoxib Enhance the Effect of Temozolomide on Glioblastoma Cells.","authors":"Oleg Pak, Alexandra Kosianova, Sergei Zaitsev, Aruna Sharma, Hari Sharma, Igor Bryukhovetskiy","doi":"10.2174/0118715273330268241008220702","DOIUrl":"https://doi.org/10.2174/0118715273330268241008220702","url":null,"abstract":"<p><strong>Introduction: </strong>Glioblastoma (GB) is one of the deadliest human brain tumors. The prognosis is unfavorable, chemotherapy with temozolomide (TMZ) may extend the survival period for a patient. The paper aims to evaluate the survival rates among relapsing GB patients, who have been treated with valproic acid (VPA), and to study its effect on tumor cells when combined with TMZ and celecoxib (CXB).</p><p><strong>Materials and methods: </strong>The research is based on retrospective analysis of the data from GB patients who had been treated with VPA as a part of a complex treatment protocol and reoperated due to a GB relapse. The experimental study involved cancer cells of C6, U87, and T98G lines. GB was modeled on Wistar rats. The research was approved by the ethics committee. Differences in groups were considered significant at p < 0.05 Results: The median of overall survival among GB patients who took VPA was 22 months, and for those who did not take VPA - 13 months. The in vitro experiment showed the half-maximal inhibitory concentration (IC50) of TMZ for various lines of cancer cells (CCs) varying from 435.3 to 844 μM. IC50 VPA for CCs of U87MG, T98G, and С6 lines was 1510, 3900, and 3600 μM: IC50 CXB for those lines of CCs was 30.1 μM, 41.07, and 48.4 μM respectively. VPA significantly enhanced the anti-glioma effect of TMZ on the U87 line of CCs, while CCs of C6 and T98G lines proved to be most susceptible to the combination of CXB and TMZ. The combination of VPA with CXB increased the anti-glioma effect of TMZ both in vitro and in vivo, also reducing the tumor size (р < 0.05) and prolonging the survival period among experimental animals.</p><p><strong>Conclusion: </strong>VPA and CXB enhance the effect of TMZ on glioblastoma cells.</p>","PeriodicalId":93947,"journal":{"name":"CNS & neurological disorders drug targets","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142483134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Insight into Medicinal Chemistry and SAR Studies of Cholinesterase and BACE-1 Inhibitors for Alzheimer's Disease. 深入了解治疗阿尔茨海默病的胆碱酯酶和 BACE-1 抑制剂的药物化学和 SAR 研究。
CNS & neurological disorders drug targets Pub Date : 2024-10-16 DOI: 10.2174/0118715273315191241002115155
Abhimannu Shome, Keshav Taruneshwar Jha, Chahat, Viney Chawla, Pooja A Chawla
{"title":"An Insight into Medicinal Chemistry and SAR Studies of Cholinesterase and BACE-1 Inhibitors for Alzheimer's Disease.","authors":"Abhimannu Shome, Keshav Taruneshwar Jha, Chahat, Viney Chawla, Pooja A Chawla","doi":"10.2174/0118715273315191241002115155","DOIUrl":"https://doi.org/10.2174/0118715273315191241002115155","url":null,"abstract":"<p><p>Alzheimer's Disease (AD) is a serious neurodegenerative condition that predominantly impacts the cholinergic neurons of the entorhinal cortex and hippocampal regions, playing a critical role in learning, navigation, and brain processing. This paper aims to discuss the three main hypotheses of Alzheimer's disease, focusing on neurotoxicity and neurodegeneration caused by mitochondrial dysfunction and ROS production, particularly analyzing the susceptibility differences between genders. Our comprehensive review focuses on significant findings from the past five years, particularly on Cholinesterase (ChE) and BACE-1 inhibitors. Researchers have conducted a detailed analysis of in vitro, in silico, and in vivo data, incorporating extensive Structure-Activity Relationship (SAR) studies. The reviewed papers have been sourced from platforms, such as Google Scholar, Semantic Scholar, and ClinicalTrials.gov, and have been selected based on their AChE and BACE-1 inhibitory activity and structural motif similarity. The review identifies the most effective compounds targeting ChE and BACE-1, highlighting acridine, dihydropyridine, and thiazole-coumarin hybrids for ChE inhibition, and oxadiazole, benzofuran, and dihydropyrimidinone for BACE-1 inhibition. This demonstrates a diverse array of potent heterocyclic hybrids. The review presents a varied compilation of scaffolds showing promise in treating Alzheimer's disease, highlighting the potential of specific compounds against ChE and BACE-1. Given the critical insights derived from our analysis, we posit that this compilation will substantially contribute to the ongoing efforts to combat neurodegeneration and prolong dementia, underscoring the importance of continuous research in this domain.</p>","PeriodicalId":93947,"journal":{"name":"CNS & neurological disorders drug targets","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142483130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
BBBper: A Machine Learning-based Online Tool for Blood-Brain Barrier (BBB) Permeability Prediction. BBBper:基于机器学习的血脑屏障 (BBB) 渗透性预测在线工具。
CNS & neurological disorders drug targets Pub Date : 2024-10-16 DOI: 10.2174/0118715273328174241007060331
Pawan Kumar, Vandana Saini, Dinesh Gupta, Pooja A Chawla, Ajit Kumar
{"title":"BBBper: A Machine Learning-based Online Tool for Blood-Brain Barrier (BBB) Permeability Prediction.","authors":"Pawan Kumar, Vandana Saini, Dinesh Gupta, Pooja A Chawla, Ajit Kumar","doi":"10.2174/0118715273328174241007060331","DOIUrl":"https://doi.org/10.2174/0118715273328174241007060331","url":null,"abstract":"<p><strong>Aims: </strong>Neuronal disorders have affected more than 15% of the world's population, signifying the importance of continued design and development of drugs that can cross the Blood-Brain Barrier (BBB).</p><p><strong>Background: </strong>BBB limits the permeability of external compounds by 98% to maintain and regulate brain homeostasis. Hence, BBB permeability prediction is vital to predict the activity of a drug-like substance.</p><p><strong>Objective: </strong>Here, we report about developing BBBper (Blood-Brain Barrier permeability prediction) using machine learning tool.</p><p><strong>Method: </strong>A supervised machine learning-based online tool, based on physicochemical parameters to predict the BBB permeability of given chemical compounds was developed. The user-end webpage was developed in HTML and linked with back-end server by a python script to run user queries and results.</p><p><strong>Result: </strong>BBBper uses a random forest algorithm at the back end, showing 97% accuracy on the external dataset, compared to 70-92% accuracy of currently available web-based BBB permeability prediction tools.</p><p><strong>Conclusion: </strong>The BBBper web tool is freely available at http://bbbper.mdu.ac.in.</p>","PeriodicalId":93947,"journal":{"name":"CNS & neurological disorders drug targets","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142483131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Navigating into the Paradigm of Nose-to-brain Delivery of Nanotherapeutics and their Repurposing as Nanotheranostics for Neurodegenerative Diseases. 纳米治疗药物鼻脑传递范例导航及其作为纳米治疗药物治疗神经退行性疾病的再利用。
CNS & neurological disorders drug targets Pub Date : 2024-10-11 DOI: 10.2174/0118715273319597240927044906
Asad Ali, Nasr A Emad, Niha Sultana, Ayesha Waheed, Mohd Aqil, Yasmin Sultana, Mohd Mujeeb
{"title":"Navigating into the Paradigm of Nose-to-brain Delivery of Nanotherapeutics and their Repurposing as Nanotheranostics for Neurodegenerative Diseases.","authors":"Asad Ali, Nasr A Emad, Niha Sultana, Ayesha Waheed, Mohd Aqil, Yasmin Sultana, Mohd Mujeeb","doi":"10.2174/0118715273319597240927044906","DOIUrl":"https://doi.org/10.2174/0118715273319597240927044906","url":null,"abstract":"<p><p>Repurposing drugs for neurodegenerative diseases using the nose-to-brain route of administration is an intriguing concept with potential benefits. The nose-to-brain route involves delivering drugs directly to the brain via the olfactory or trigeminal pathways, bypassing the blood-brain barrier, which can improve drug efficacy and reduce systemic side effects. Treatment of numerous neurodegenerative diseases such as Multiple sclerosis, Amyotrophic lateral sclerosis, Huntington's, Alzheimer's, and Parkinson's diseases has been attempted using this route of administration. These drugs may include neuroprotective agents, anti-inflammatory drugs, antioxidants, or diseasemodifying therapies. Nanotheranostics, which integrates therapeutic and diagnostic functions in a nanosystem, improves treatment precision and efficacy. Repurposing nanotherapeutics as nanotheranostics for neurodegenerative diseases through the nose-to-brain route of administration holds great potential for both diagnosis and treatment. This review highlights the various mechanisms engaged in transporting nanocarriers from nose-to-brain and the proposed fate of these nanocarriers using different live imaging techniques. Additionally, the discussion covers the recent combinatorial therapeutic approaches and theranostic applications of various nanocarriers used for neurodegenerative diseases through the nose-to-brain. Toxicity to the CNS and nasal mucosa and regulatory considerations about these delivery systems are also deliberated. Overall, repurposed nanoparticles designed as nanotheranostic agents offer a versatile platform for precise diagnosis, targeted therapy, and personalized management of neurodegenerative diseases, holding great promise for improving patient care and advancing our understanding of these complex disorders.</p>","PeriodicalId":93947,"journal":{"name":"CNS & neurological disorders drug targets","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142483133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the Potential of Herbal Compounds as Autophagy Modulators in Alzheimer's Disease: A Comprehensive Review. 探索草药化合物作为阿尔茨海默病自噬调节剂的潜力:全面综述。
CNS & neurological disorders drug targets Pub Date : 2024-09-18 DOI: 10.2174/0118715273298025240905130205
Ekta Yadav, Ashok Kumar Mandal, Ajay Kumar Sah, Sandesh Poudel, Prateek Pathak, Habibullah Khalilullah, Mariusz Jaremko, Abdul-Hamid Emwas, Pankajkumar Yadav, Amita Verma
{"title":"Exploring the Potential of Herbal Compounds as Autophagy Modulators in Alzheimer's Disease: A Comprehensive Review.","authors":"Ekta Yadav, Ashok Kumar Mandal, Ajay Kumar Sah, Sandesh Poudel, Prateek Pathak, Habibullah Khalilullah, Mariusz Jaremko, Abdul-Hamid Emwas, Pankajkumar Yadav, Amita Verma","doi":"10.2174/0118715273298025240905130205","DOIUrl":"https://doi.org/10.2174/0118715273298025240905130205","url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a progressive neurodegenerative disorder that causes atrophy of brain cells, leading to their death, and has become a leading cause of death in aging populations worldwide. AD is characterized by β-amyloid (Aβ) deposition and tau phosphorylation in neural tissues, but the precise pathophysiology of the disease is still obscure. Autophagy is an evolutionarily targeted mechanism that is necessary for the elimination of neuronal and glial misfolded proteins as well as proteins. It also plays an essential role in synaptic plasticity. The aberrant autophagy primarily influences the process of aging and neurodegeneration. Autophagy significantly influences how Aβ and tau function physiologically, therefore, atypical autophagy is expected to perform an important role in Aβ deposition and tau phosphorylation characteristic in the development of AD. Bioactive phytoconstituents could majorly contribute as a natural yet effective alternative approach to slow down the progression of neurodegeneration and promote the active aging process in elderly patients. Over the recent years, it is well evidenced that different secondary metabolites including polyphenols, alkaloids, terpenes, and phenols exhibited neuroprotective effects, and attenuated brain damage, and cognitive impairment in vitro as well as in vivo. Additionally, the underlying mechanism of action shared by them is the regulation of competent autophagy via the removal of aggregated protein and mitochondrial dysfunction. The present article is structured as a reference for researchers keen to investigate and assess the new natural compound-mediated therapeutic approach for AD treatment through the modulation of autophagy.</p>","PeriodicalId":93947,"journal":{"name":"CNS & neurological disorders drug targets","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142303471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nadolol Attenuates Brain Cell Ferroptosis in Ischemic Stroke Rats by Targeting the HOIL-1/IRP2 Pathway. 纳多洛尔通过靶向 HOIL-1/IRP2 通路减轻缺血性脑卒中大鼠脑细胞铁素沉着
CNS & neurological disorders drug targets Pub Date : 2024-09-09 DOI: 10.2174/0118715273308006240822165146
Xiao-Yan Yang, Wen-Jun Zhu, Di-Chen, Dan Peng, Jun Peng, Zhi-Jun Zhou, Xiu-Ju Luo
{"title":"Nadolol Attenuates Brain Cell Ferroptosis in Ischemic Stroke Rats by Targeting the HOIL-1/IRP2 Pathway.","authors":"Xiao-Yan Yang, Wen-Jun Zhu, Di-Chen, Dan Peng, Jun Peng, Zhi-Jun Zhou, Xiu-Ju Luo","doi":"10.2174/0118715273308006240822165146","DOIUrl":"https://doi.org/10.2174/0118715273308006240822165146","url":null,"abstract":"<p><strong>Introduction: </strong>Heme-oxidized iron regulatory protein 2 (IRP2) ubiquitin ligase-1 (HOIL-1) is believed to contribute to the ubiquitination of IRP2, which facilitates the transcription of transferrin receptor 1 (TfR1) while preventing the transcription of ferroportin-1 (FPN-1). Bioinformatics analysis predicts that nadolol (a β-blocker) interacts with the HOIL-1.</p><p><strong>Method: </strong>The present study is intended to explore whether nadolol suppresses ferroptosis in the brains of rats suffering from ischemic stroke via targeting the HOIL-1/IRP2 pathway. A rat model of ischemic stroke was established by blocking the middle cerebral artery for 2 h plus 24 h reperfusion, and nadolol (2.5 or 5 mg/kg) was given at 1h after reperfusion. HT22 cells were subjected to 12 h of hypoxia, followed by 24 h of reoxygenation for simulating ischemic stroke, and nadolol (0.1 or 0.25 μM) was administered to the culture medium before reoxygenation.</p><p><strong>Results: </strong>The stroke rats showed evident brain injury (increases in neurological deficit score and infarct volume) and ferroptosis, along with up-regulation of IRP2 and TfR1 while downregulation of HOIL-1 and FPN-1; these phenomena were reversed in the presence of nadolol. In the cultured HT22 cells, hypoxia/reoxygenation-induced LDH release, ferroptosis, and changes in the levels of relevant proteins (IRP2, TfR1, HOIL-1, and FPN-1) were also reversed by nadolol.</p><p><strong>Conclusion: </strong>In terms of these findings, it is concluded that nadolol can protect the ischemic rats' brains against ferroptosis by targeting the HOIL-1/IRP2 pathway, thereby preventing intracellular iron overload. Thus, nadolol may be a novel indication for treating patients with ischemic stroke.</p>","PeriodicalId":93947,"journal":{"name":"CNS & neurological disorders drug targets","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142303472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emerging Treatments for Subarachnoid Hemorrhage. 蛛网膜下腔出血的新疗法
CNS & neurological disorders drug targets Pub Date : 2024-01-01 DOI: 10.2174/0118715273279212240130065713
Matthew C Findlay, Mrinmoy Kundu, Jayson R Nelson, Kyril L Cole, Candace Winterton, Samuel Tenhoeve, Brandon Lucke-Wold
{"title":"Emerging Treatments for Subarachnoid Hemorrhage.","authors":"Matthew C Findlay, Mrinmoy Kundu, Jayson R Nelson, Kyril L Cole, Candace Winterton, Samuel Tenhoeve, Brandon Lucke-Wold","doi":"10.2174/0118715273279212240130065713","DOIUrl":"10.2174/0118715273279212240130065713","url":null,"abstract":"<p><p>The current landscape of therapeutic strategies for subarachnoid hemorrhage (SAH), a significant adverse neurological event commonly resulting from the rupture of intracranial aneurysms, is rapidly evolving. Through an in-depth exploration of the natural history of SAH, historical treatment approaches, and emerging management modalities, the present work aims to provide a broad overview of the shifting paradigms in SAH care. By synthesizing the historical management protocols with contemporary therapeutic advancements, patient-specific treatment plans can be individualized and optimized to deliver outstanding care for the best possible SAH-related outcomes.</p>","PeriodicalId":93947,"journal":{"name":"CNS & neurological disorders drug targets","volume":" ","pages":"1345-1356"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139974991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信