Parkinson's Disease: Unravelling the Medicinal Perspectives and Recent Developments of Heterocyclic Monoamine Oxidase-B Inhibitors.

Neha Rana, Parul Grover
{"title":"Parkinson's Disease: Unravelling the Medicinal Perspectives and Recent Developments of Heterocyclic Monoamine Oxidase-B Inhibitors.","authors":"Neha Rana, Parul Grover","doi":"10.2174/0118715273340983241018095529","DOIUrl":null,"url":null,"abstract":"<p><p>Parkinson's disease is a neurodegenerative condition characterized by slow movement (bradykinesia), tremors, and muscle stiffness. These symptoms occur due to the degeneration of dopamine- producing neurons in the substantia nigra region of the brain, leading to reduced dopamine levels. The development of Parkinson's Disease (PD) involves a combination of genetic and environmental factors. PD is associated with abnormal regulation of the monoamine oxidase (MAO) enzyme. Monoamine oxidase inhibitors (MAOIs) are an important class of drugs used to treat PD and other neurological disorders. In the early stages of PD, monotherapy with MAO-B inhibitors has been shown to be both safe and effective. These inhibitors are also commonly used as adjuncts in long-term disease management, as they can improve both motor and non-motor symptoms, reduce \"OFF\" periods, and potentially slow disease progression. However, current MAO-B inhibitors come with side effects like dizziness, nausea, vomiting, light-headedness, and fainting. Therefore, accelerating the development of new MAO-B inhibitors with fewer side effects is crucial. This review explores natural compounds that may inhibit monoamine oxidase B (MAO-B), focusing on key findings from the past seven years. It highlights the most effective heterocyclic compounds against MAO-B, including thiazolyl hydrazone, pyridoxine-resveratrol, pyridazine, isoxazole, oxadiazole, benzothiazole, benzoxazole, coumarin, caffeine, pyrazoline, piperazine, piperidine, pyrrolidine, and morpholine derivatives. The review covers in vitro, in silico, and in vivo data, along with the structure- activity relationship of these compounds. These findings offer valuable insights for the development of more effective MAO-B inhibitors and advancements in Parkinson's disease research.</p>","PeriodicalId":93947,"journal":{"name":"CNS & neurological disorders drug targets","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CNS & neurological disorders drug targets","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0118715273340983241018095529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Parkinson's disease is a neurodegenerative condition characterized by slow movement (bradykinesia), tremors, and muscle stiffness. These symptoms occur due to the degeneration of dopamine- producing neurons in the substantia nigra region of the brain, leading to reduced dopamine levels. The development of Parkinson's Disease (PD) involves a combination of genetic and environmental factors. PD is associated with abnormal regulation of the monoamine oxidase (MAO) enzyme. Monoamine oxidase inhibitors (MAOIs) are an important class of drugs used to treat PD and other neurological disorders. In the early stages of PD, monotherapy with MAO-B inhibitors has been shown to be both safe and effective. These inhibitors are also commonly used as adjuncts in long-term disease management, as they can improve both motor and non-motor symptoms, reduce "OFF" periods, and potentially slow disease progression. However, current MAO-B inhibitors come with side effects like dizziness, nausea, vomiting, light-headedness, and fainting. Therefore, accelerating the development of new MAO-B inhibitors with fewer side effects is crucial. This review explores natural compounds that may inhibit monoamine oxidase B (MAO-B), focusing on key findings from the past seven years. It highlights the most effective heterocyclic compounds against MAO-B, including thiazolyl hydrazone, pyridoxine-resveratrol, pyridazine, isoxazole, oxadiazole, benzothiazole, benzoxazole, coumarin, caffeine, pyrazoline, piperazine, piperidine, pyrrolidine, and morpholine derivatives. The review covers in vitro, in silico, and in vivo data, along with the structure- activity relationship of these compounds. These findings offer valuable insights for the development of more effective MAO-B inhibitors and advancements in Parkinson's disease research.

帕金森病:揭示杂环单胺氧化酶-B 抑制剂的药用前景和最新发展。
帕金森病是一种神经退行性疾病,以运动缓慢(运动迟缓)、震颤和肌肉僵硬为特征。出现这些症状的原因是大脑黑质区域产生多巴胺的神经元发生变性,导致多巴胺水平降低。帕金森病(PD)的发病涉及遗传和环境因素的综合作用。帕金森病与单胺氧化酶(MAO)调节异常有关。单胺氧化酶抑制剂(MAOIs)是治疗帕金森病和其他神经系统疾病的一类重要药物。在帕金森氏症的早期阶段,使用 MAO-B 抑制剂进行单药治疗已被证明是安全有效的。这些抑制剂还常用于长期疾病管理的辅助治疗,因为它们可以改善运动和非运动症状,减少 "关机 "期,并有可能减缓疾病的进展。然而,目前的 MAO-B 抑制剂有头晕、恶心、呕吐、头重脚轻和昏厥等副作用。因此,加快开发副作用较少的新型 MAO-B 抑制剂至关重要。本综述探讨了可抑制单胺氧化酶 B(MAO-B)的天然化合物,重点关注过去七年的主要研究成果。它重点介绍了对 MAO-B 最有效的杂环化合物,包括噻唑腙、吡哆醇-白藜芦醇、哒嗪、异噁唑、噁二唑、苯并噻唑、苯并噁唑、香豆素、咖啡碱、吡唑啉、哌嗪、哌啶、吡咯烷和吗啉衍生物。综述涵盖了体外、硅学和体内数据,以及这些化合物的结构-活性关系。这些发现为开发更有效的 MAO-B 抑制剂和推进帕金森病研究提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信