Menna El Gaafary, Passent M Abdel-Baki, Ali M El-Halawany, Heba M Mohamed, Amira Duweb, Hossam M Abdallah, Gamal A Mohamed, Sabrin R M Ibrahim, Thomas Simmet, Tatiana Syrovets
{"title":"Corrigendum to \"Prenylated xanthones from mangosteen (Garcinia mangostana) target oxidative mitochondrial respiration in cancer cells\" Biomed. Pharmacother. 179 (2024) 117365.","authors":"Menna El Gaafary, Passent M Abdel-Baki, Ali M El-Halawany, Heba M Mohamed, Amira Duweb, Hossam M Abdallah, Gamal A Mohamed, Sabrin R M Ibrahim, Thomas Simmet, Tatiana Syrovets","doi":"10.1016/j.biopha.2024.117441","DOIUrl":"10.1016/j.biopha.2024.117441","url":null,"abstract":"","PeriodicalId":93904,"journal":{"name":"Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie","volume":" ","pages":"117441"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142303321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Preparation of photo-controlled release ROS-responsive Ce6/elemene co-loaded liposomes and study on the effect on enhancing apoptosis of NMIBC.","authors":"Xiulin Zhang, Wei Mei, Dongyan Guo, Jing Sun, Yajun Shi, Xiaofei Zhang, Junbo Zou, Jiangxue Cheng, Fei Luan, Bingtao Zhai, Huan Tian","doi":"10.1016/j.biopha.2024.117398","DOIUrl":"10.1016/j.biopha.2024.117398","url":null,"abstract":"<p><p>At present, chemotherapy combined with photodynamic therapy is exerting satisfactory therapeutic effects in the treatment of tumors. Chlorin e6 (Ce6) is a photosensitizer with high efficiency and low dark toxicity. At the same time, elemene (ELE) contains high-efficiency and low-toxicity anti-cancer active ingredients, which can effectively penetrate tumor tissue and inhibit its recovery and proliferation. Due to the poor water solubility of these two drugs, we prepared ELE/Ce6 co-loaded liposomes (Lipo-ELE/Ce6) to improve their water solubility, thereby enhancing the anti-tumor effect. The characterization of Lipo-ELE/Ce6 showed that Lipo-ELE/Ce6 had suitable encapsulation efficiency (EE), particle size, polydispersity (PDI), zeta potential, and good photo-controlled release properties. In vitro, Lipo-ELE/Ce6 effectively inhibited the growth of T24 cells and induced apoptosis, and more importantly, in vivo experiments showed that Lipo-ELE/Ce6 had significant anti-tumor effects, which was significantly better than free drugs. The above results suggest that Lipo-ELE/Ce6 can significantly enhance the induction of apoptosis of non-muscle invasive bladder cancer (NMIBC) by light-controlled release and ROS response.</p>","PeriodicalId":93904,"journal":{"name":"Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie","volume":"179 ","pages":"117398"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142156937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Intrathecal administration of MCRT produced potent antinociception in chronic inflammatory pain models via μ-δ heterodimer with limited side effects.","authors":"Yaofeng Zhao, Zhonghua Zhang, Dingnian Gou, Pengtao Li, Tong Yang, Zhanyu Niu, Jerine Peter Simon, Xuyan Guan, Xinyu Li, Chunbo He, Shouliang Dong","doi":"10.1016/j.biopha.2024.117389","DOIUrl":"10.1016/j.biopha.2024.117389","url":null,"abstract":"<p><p>An important goal in the opioid field is to discover effective analgesic drugs with minimal side effects. MCRT demonstrated potent antinociceptive effects with limited side effects, making it a promising candidate. However, its pharmacological properties and how it minimizes side effects remain unknown. Various mouse pain and opioid side effect models were used to evaluate the antinociceptive properties and safety at the spinal level. The targets of MCRT were identified through cAMP measurement, isolated tissue assays, and pharmacological experiments. Immunofluorescence was employed to visualize protein expression. MCRT displayed distinct antinociceptive effects between acute and chronic inflammatory pain models due to its multifunctional properties at the μ opioid receptor (MOR), µ-δ heterodimer (MDOR), and neuropeptide FF receptor 2 (NPFFR2). Activation of NPFFR2 reduced MOR-mediated antinociception, leading to bell-shaped response curves in acute pain models. However, activation of MDOR produced more effective antinociception in chronic inflammatory pain models. MCRT showed limited tolerance and opioid-induced hyperalgesia in both acute and chronic pain models and did not develop cross-tolerance to morphine. Additionally, MCRT did not exhibit addictive properties, gastrointestinal inhibition, and effects on motor coordination. Mechanistically, peripheral chronic inflammation or repeated administration of morphine and MCRT induced an increase in MDOR in the spinal cord. Chronic administration of MCRT had no apparent effect on microglial activation in the spinal cord. These findings suggest that MCRT is a versatile compound that provides potent antinociception with minimal opioid-related side effects. MDOR could be a promising target for managing chronic inflammatory pain and addressing the opioid crisis.</p>","PeriodicalId":93904,"journal":{"name":"Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie","volume":"179 ","pages":"117389"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142147101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fengqing Qin, Ming Zhang, Pei Wang, Ziru Dai, Xi Li, Dongliang Li, Lijun Jing, Cen Qi, Heliang Fan, Mei Qin, Ying Li, Likun Huang, Tianci Wang
{"title":"Transcriptome analysis reveals the anti-Parkinson's activity of Mangiferin in zebrafish.","authors":"Fengqing Qin, Ming Zhang, Pei Wang, Ziru Dai, Xi Li, Dongliang Li, Lijun Jing, Cen Qi, Heliang Fan, Mei Qin, Ying Li, Likun Huang, Tianci Wang","doi":"10.1016/j.biopha.2024.117387","DOIUrl":"10.1016/j.biopha.2024.117387","url":null,"abstract":"<p><p>As the global population ages, the incidence of Parkinson's Disease (PD) continues to rise, imposing significant social and economic burdens. Mangiferin (MGF), a polyphenolic, bioactive compound has been shown to play a role in the prevention and treatment of PD. This study investigates the neuroprotective effects of MGF in an MPTP-induced zebrafish model of PD through transcriptome analysis. Initially, optimal concentrations for modeling were determined using various MPTP and MGF combinations. The zebrafish were then divided into control, MPTP-treated, and MGF co-treated groups. Subsequent evaluations included hatching rates, mortality rates, growth and development conditions, spontaneous motor abilities, as well as measurements of enzymatic activities of SOD, CAT, and levels of GSH. Ultimately, the therapeutic efficacy of MGF on the PD model in zebrafish was assessed through transcriptome sequencing. The results demonstrated that MPTP treatment induced PD-associated symptoms in zebrafish, while MGF treatment significantly improved the motor abilities and survival rates of the PD model zebrafish, effectively reducing oxidative stress and ameliorating PD symptoms. Transcriptome sequencing further revealed that MGF may mitigate mitochondrial-related oxidative stress in PD zebrafish by modulating the expression of critical genes including lrrk2, vps35, atp13a, dnajc6, and uchl1. Differential gene expression analysis indicated that these genes are primarily involved in vital signaling pathways, such as neuroactive ligand-receptor interaction, and the calcium signaling pathway. In summary, our study provides robust scientific evidence supporting MGF as a potential therapeutic candidate for PD by preserving mitochondrial homeostasis and elucidating its mechanisms of action.</p>","PeriodicalId":93904,"journal":{"name":"Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie","volume":"179 ","pages":"117387"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142156940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Metformin inhibits OCT3-mediated serotonin transport in the placenta.","authors":"Veronika Vachalova, Fiona Kumnova, Tetiana Synova, Kasin Yadunandam Anandam, Cilia Abad, Rona Karahoda, Frantisek Staud","doi":"10.1016/j.biopha.2024.117399","DOIUrl":"10.1016/j.biopha.2024.117399","url":null,"abstract":"<p><p>Proper fetal development requires tight regulation of serotonin concentrations within the fetoplacental unit. This homeostasis is partly maintained by the placental transporter OCT3/SLC22A3, which takes up serotonin from the fetal circulation. Metformin, an antidiabetic drug commonly used to treat gestational diabetes mellitus, was shown to inhibit OCT3. We, therefore, hypothesized that its use during pregnancy could disrupt placental serotonin homeostasis. This hypothesis was tested using three experimental model systems: primary trophoblast cells isolated from the human term placenta, fresh villous human term placenta fragments, and rat term placenta perfusions. Inhibition of serotonin transport by metformin at three concentrations (1 μM, 10 μM, and 100 μM) was assessed in all three models. The OCT3 inhibitor decynium-22 (100 μM) and paroxetine (100 μM), a dual inhibitor of SERT and OCT3, were used as controls. In primary trophoblasts, paroxetine exhibited the strongest inhibition of serotonin uptake, followed by decynium-22. Metformin showed a concentration-dependent effect, reducing serotonin uptake by up to 57 % at the highest concentration. Its inhibitory effect was less pronounced in fresh villous fragments but remained statistically significant at all concentrations. In the perfused rat placenta, metformin demonstrated a concentration-dependent effect, reducing placental serotonin uptake by 44 % at the highest concentration tested. Our findings across all experimental models show inhibition of placental OCT3 by metformin, resulting in reduced serotonin uptake by the trophoblast. This sheds light on mechanisms that may underpin metformin-mediated effects on fetal development.</p>","PeriodicalId":93904,"journal":{"name":"Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie","volume":"179 ","pages":"117399"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142147103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kristine Cate S Pe, Sirirut Jewmoung, Sm Ali Hosseini Rad, Natthida Chantarat, Chantiya Chanswangphuwana, Haruko Tashiro, Koramit Suppipat, Supannikar Tawinwung
{"title":"Optimization of anti-TIM3 chimeric antigen receptor with CD8α spacer and TNFR-based costimulation for enhanced efficacy in AML therapy.","authors":"Kristine Cate S Pe, Sirirut Jewmoung, Sm Ali Hosseini Rad, Natthida Chantarat, Chantiya Chanswangphuwana, Haruko Tashiro, Koramit Suppipat, Supannikar Tawinwung","doi":"10.1016/j.biopha.2024.117388","DOIUrl":"10.1016/j.biopha.2024.117388","url":null,"abstract":"<p><p>CAR T cell therapy for AML remains limited due to the lack of a proper target without on-target off-tumor toxicity. TIM3 is a promising target due to its high expression on AML cells and absence in most normal hematopoietic cells. Previous reports have shown that each CAR component impacts CAR functionality. Here, we optimized TIM-3 targeting CAR T cells for AML therapy. We generated CARs targeting TIM3 with two different non-signaling domains: an IgG2-CH3 spacer with CD28 transmembrane domain (CH3/CD28) and a CD8α spacer with CD8α transmembrane domain (CD8/CD8), and evaluated their characteristics and function. Incorporating the non-signaling CH3/CD28 domain resulted in unstable CAR expression in anti-TIM3 CAR T cells, leading to lower surface CAR expression over time and reduced cytotoxic function compared to anti-TIM3 CARs with the CD8/CD8 domain. Both types of anti-TIM3 CAR T cells transiently exhibited fratricide, which subsided overtime, and both CAR T cells achieved substantial T cell expansion. To further optimize the design, we explored the effects of different costimulatory domains. Compared with CD28 costimulation, 4-1BB and CD27 combined with a CD8/CD8 non-signaling domain showed higher cytokine secretion, superior antitumor activity, and enhanced T-cell persistence after repeated antigen exposure. These findings emphasize the impact of the optimal design of CAR constructs that provide efficient function. In the context of anti-TIM3 CAR T cells, using a CD8α spacer and transmembrane domain with TNFR-based costimulation is a promising CAR design to improve anti-TIM3 CAR T cell function for AML therapy.</p>","PeriodicalId":93904,"journal":{"name":"Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie","volume":"179 ","pages":"117388"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142147105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}