Astragalus polysaccharide enhances antitumoral effects of chimeric antigen receptor- engineered (CAR) T cells by increasing CD122+CXCR3+PD-1- memory T cells.
{"title":"Astragalus polysaccharide enhances antitumoral effects of chimeric antigen receptor- engineered (CAR) T cells by increasing CD122<sup>+</sup>CXCR3<sup>+</sup>PD-1<sup>-</sup> memory T cells.","authors":"Qunfang Zhang, Chunzhao Su, Yini Luo, Fang Zheng, Chun-Ling Liang, Yuchao Chen, Huazhen Liu, Feifei Qiu, Yunshan Liu, Wenxuan Feng, Zhenhua Dai","doi":"10.1016/j.biopha.2024.117401","DOIUrl":null,"url":null,"abstract":"<p><p>Chimeric antigen receptor-engineered T (CAR-T) cell therapy of cancer has been a hotspot and promising. However, due to rapid exhaustion, CAR-T cells are less effective in solid tumors than in hematological ones. CD122<sup>+</sup>CXCR3<sup>+</sup> memory T cells are characterized with longevity, self-renewal and great antitumoral capacity. Thus, it's compelling to induce memory CAR-T cells to enhance their efficacy on solid tumors. Astragalus polysaccharide (APS) has reportedly exhibited antitumoral effects. However, it's unclear if APS has an impact on CD8<sup>+</sup> memory T cell generation or persistence. Using two human cancer cell lines, here we found that APS significantly improved the persistence of GPC3-targeted CAR-T cells and enhanced their suppression of tumor growth in both Huh7 and HepG2 xenograft models of hepatocellular carcinoma. APS increased CD122<sup>+</sup>/CXCR3<sup>+</sup> memory T cells, but decreased their PD-1<sup>+</sup> subset within CD8<sup>+</sup> CAR-T cells in tumor-bearing mice, while these effects of APS were also confirmed with in vitro experiments. Moreover, APS augmented the expression of chemokines CXCL9/CXCL10 by the tumor in vivo and in vitro. It also enhanced the proliferation and chemotaxis/migration of CAR-T cells in vitro. Finally, APS promoted the phosphorylation of STAT5 in CD8<sup>+</sup> CAR-T cells, whereas inhibition of STAT5 activation reversed these in vitro effects of APS. Therefore, APS enhanced the antitumoral effects of CD8<sup>+</sup> CAR-T cells by promoting formation/persistence of CD122<sup>+</sup>/CXCR3<sup>+</sup>/PD-1<sup>-</sup> memory T cells and their migration to the tumor.</p>","PeriodicalId":93904,"journal":{"name":"Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie","volume":"179 ","pages":"117401"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.biopha.2024.117401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/8 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Chimeric antigen receptor-engineered T (CAR-T) cell therapy of cancer has been a hotspot and promising. However, due to rapid exhaustion, CAR-T cells are less effective in solid tumors than in hematological ones. CD122+CXCR3+ memory T cells are characterized with longevity, self-renewal and great antitumoral capacity. Thus, it's compelling to induce memory CAR-T cells to enhance their efficacy on solid tumors. Astragalus polysaccharide (APS) has reportedly exhibited antitumoral effects. However, it's unclear if APS has an impact on CD8+ memory T cell generation or persistence. Using two human cancer cell lines, here we found that APS significantly improved the persistence of GPC3-targeted CAR-T cells and enhanced their suppression of tumor growth in both Huh7 and HepG2 xenograft models of hepatocellular carcinoma. APS increased CD122+/CXCR3+ memory T cells, but decreased their PD-1+ subset within CD8+ CAR-T cells in tumor-bearing mice, while these effects of APS were also confirmed with in vitro experiments. Moreover, APS augmented the expression of chemokines CXCL9/CXCL10 by the tumor in vivo and in vitro. It also enhanced the proliferation and chemotaxis/migration of CAR-T cells in vitro. Finally, APS promoted the phosphorylation of STAT5 in CD8+ CAR-T cells, whereas inhibition of STAT5 activation reversed these in vitro effects of APS. Therefore, APS enhanced the antitumoral effects of CD8+ CAR-T cells by promoting formation/persistence of CD122+/CXCR3+/PD-1- memory T cells and their migration to the tumor.