BiochimiePub Date : 2025-02-01Epub Date: 2024-10-18DOI: 10.1016/j.biochi.2024.10.014
Shikun Ge, Mei Dang, Alberto Carlos Pires Dias, Xiaoying Zhang
{"title":"Engineered IgG Fc-conjugation prolongs the half-life of florfenicol and alleviates pneumonia in mice.","authors":"Shikun Ge, Mei Dang, Alberto Carlos Pires Dias, Xiaoying Zhang","doi":"10.1016/j.biochi.2024.10.014","DOIUrl":"10.1016/j.biochi.2024.10.014","url":null,"abstract":"<p><p>Small molecule drugs often exhibit short half-lives, requiring frequent administrations to maintain therapeutic concentrations over an extended period. To address this issue, the fragment crystallizable (Fc) region of IgG, known to prolong the half-life of antibodies via its interaction with the Fc neonatal receptor, was harnessed as a carrier protein to extend the half-life of a small molecule drug, florfenicol. Florfenicol, was chemically coupled to a recombinant Fc protein expressed using the eukaryotic expression system in HEK293 cells. The Fc-florfenicol conjugate exhibited a substantially prolonged half-life of from 3.8 to 9.1 h compared to unconjugated florfenicol and demonstrated excellent therapeutic properties in treating pneumonia in a mouse model. Our results, combined with the literature analysis on Fc-small molecule conjugates, show that Fc can substantially enhance the drug's half-life and suggest the potential for its use as a carrier in novel delivery systems.</p>","PeriodicalId":93898,"journal":{"name":"Biochimie","volume":" ","pages":"105-113"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142482918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiochimiePub Date : 2025-02-01Epub Date: 2024-10-04DOI: 10.1016/j.biochi.2024.10.001
Reyna L Cuachirria-Espinoza, Alin García-Miranda, Rafael Hernández-Barragán, Dania A Nava-Tapia, Monserrat Olea-Flores, Napoleón Navarro-Tito
{"title":"Analysis of the relationship between resistin with prognosis, cell migration, and p38 and ERK1/2 activation in breast cancer.","authors":"Reyna L Cuachirria-Espinoza, Alin García-Miranda, Rafael Hernández-Barragán, Dania A Nava-Tapia, Monserrat Olea-Flores, Napoleón Navarro-Tito","doi":"10.1016/j.biochi.2024.10.001","DOIUrl":"10.1016/j.biochi.2024.10.001","url":null,"abstract":"<p><p>Obesity increases the risk and mortality of breast cancer through dysregulated secretion of proinflammatory cytokines and tumor adipokines that induce an inflammatory breast microenvironment. Resistin is an adipokine secreted by adipocytes, immune cells, and predominantly macrophages, which contributes to cancer progression, but its molecular mechanism in cancer is not completely described. In this study, we analyzed the relationship of resistin on breast cancer prognosis and tumor progression and the effect in vitro of resistin on p38 and ERK1/2 activation in breast cancer cell lines. By bioinformatic analysis, we found that resistin is overexpressed in the basal subtype triple-negative breast cancer and is related to poor prognosis. In addition, we demonstrated a positive correlation between RETN and MAPK3 expression in basal triple-negative breast cancer. Importantly, we found amplifications of the RETN gene in at least 20 % of metastatic samples from patients with breast cancer. Most samples with RETN amplifications metastasized to bone and showed high expression of IL-8 (CXCL8) and IL-6 (IL6). Finally, resistin could be considered a prognostic marker for basal triple-negative breast cancer, and we also proposed the possibility that resistin-induced cell migration involves the activation of MAPK in breast cancer cells.</p>","PeriodicalId":93898,"journal":{"name":"Biochimie","volume":" ","pages":"19-29"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142382734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiochimiePub Date : 2025-02-01Epub Date: 2024-10-05DOI: 10.1016/j.biochi.2024.10.003
Sousan Cheong, Yujie Peng, Feng Lu, Yunfan He
{"title":"Structural extracellular matrix-mediated molecular signaling in wound repair and tissue regeneration.","authors":"Sousan Cheong, Yujie Peng, Feng Lu, Yunfan He","doi":"10.1016/j.biochi.2024.10.003","DOIUrl":"10.1016/j.biochi.2024.10.003","url":null,"abstract":"<p><p>The extracellular matrix (ECM) is a complex, non-cellular network of molecules that offers structural support for cells and tissues. The ECM is composed of various structural components, including collagen, fibronectin, laminin, perlecan, nidogen, tenascin, and fibulin, which are capable of binding to each other and to cell-to-adhesion receptors, endowing the ECM with unique physical and biochemical properties that are essential for its function in maintaining health and managing disease. Over the past three decades, extensive research has shown that the core of the ECM can significantly impact cellular events at the molecular level. Structural modifications have also been strongly associated with tissue repair. Through interactions with cells, matrix proteins regulate critical processes such as cell proliferation and differentiation, migration, and apoptosis, essential for maintaining tissue homeostasis, formation, and regeneration. This review emphasizes the interlocking networks of ECM macromolecules and their primary roles in tissue regeneration and wound repair. Through studying ECM dynamics, researchers have discovered molecular signaling pathways that demonstrate how the ECM influences protein patterns and open up more possibilities for developing therapeutics that target the ECM to enhance wound repair and tissue regeneration.</p>","PeriodicalId":93898,"journal":{"name":"Biochimie","volume":" ","pages":"58-68"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142382736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiochimiePub Date : 2025-02-01Epub Date: 2024-10-18DOI: 10.1016/j.biochi.2024.10.010
Shuyue Zhu, Chunjie Hu, Yan Wang, Mengli Jin, Qiuyue Zhang, Shaoyu Han, Yating Tang, Desheng Wu, Di Fu, Shuang Jiang, Danning Song, Lin Wei, Wu Song, Chi Zhang, Wenfeng Zhang
{"title":"Daphnetin weakened the pathogenicity of methicillin-resistant Staphylococcus aureus by inhibiting Sortase A and α-hemolysin.","authors":"Shuyue Zhu, Chunjie Hu, Yan Wang, Mengli Jin, Qiuyue Zhang, Shaoyu Han, Yating Tang, Desheng Wu, Di Fu, Shuang Jiang, Danning Song, Lin Wei, Wu Song, Chi Zhang, Wenfeng Zhang","doi":"10.1016/j.biochi.2024.10.010","DOIUrl":"10.1016/j.biochi.2024.10.010","url":null,"abstract":"<p><p>The increasing prevalence of antibiotic-resistant bacteria, represented by Methicillin-resistant Staphylococcus aureus (MRSA), has necessitated a shift towards anti-virulence strategies in treatment approaches. This research demonstrated that daphnetin effectively disrupted MRSA virulence by targeting Sortase A (SrtA), an enzyme in Staphylococcus aureus (S. aureus) responsible for adhesion and invasion, as well as the toxin α-hemolysin (Hla) that leads to cell lysis. Utilizing Fluorescence Resonance Energy Transfer, daphnetin showed direct inhibitory effect on SrtA activity, with an IC<sub>50</sub> of 25.98 μg/mL. Additionally, daphnetin hindered various SrtA-mediated processes in S. aureus, such as fibronectin adherence, A549 cell invasion, biofilm formation, and bacterial motility. Daphnetin inhibited S. aureus-induced hemolysis and reduced Hla expression as confirmed by Western blot analysis. Molecular docking studies identified specific binding sites of daphnetin with SrtA, highlighting key amino acid residues like GLU-77, TYR-75, and LYS-145, with a docking score of -7.139 kcal/mol. Besides that, daphnetin exhibited a protective effect on MRSA-induced pneumonia in vivo. In summary, daphnetin, a natural compound, effectively inhibited SrtA and Hla activities, attenuating MRSA virulence and showcasing potential for treating bacterial infections.</p>","PeriodicalId":93898,"journal":{"name":"Biochimie","volume":" ","pages":"84-94"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142482917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enzymatic tools for mitochondrial genome manipulation.","authors":"Beatrisa Rimskaya, Nikita Shebanov, Nina Entelis, Ilya Mazunin","doi":"10.1016/j.biochi.2024.10.013","DOIUrl":"10.1016/j.biochi.2024.10.013","url":null,"abstract":"<p><p>Mutations in mitochondrial DNA (mtDNA) can manifest phenotypically as a wide range of neuromuscular and neurodegenerative pathologies that are currently only managed symptomatically without addressing the root cause. A promising approach is the development of molecular tools aimed at mtDNA cutting or editing. Unlike nuclear DNA, a cell can have hundreds or even thousands of mitochondrial genomes, and mutations can be present either in all of them or only in a subset. Consequently, the developed tools are aimed at reducing the number of copies of mutant mtDNA or editing mutant nucleotides. Despite some progress in the field of mitochondrial genome editing in human cells, working with model animals is still limited due to the complexity of their creation. Furthermore, not all existing editing systems can be easily adapted to function within mitochondria. In this review, we evaluate the mtDNA editing tools available today, with a particular focus on specific mtDNA mutations linked to hereditary mitochondrial diseases, aiming to provide an in-depth understanding of both the opportunities and hurdles to the development of mitochondrial genome editing technologies.</p>","PeriodicalId":93898,"journal":{"name":"Biochimie","volume":" ","pages":"114-128"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142482919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiochimiePub Date : 2025-02-01Epub Date: 2024-10-01DOI: 10.1016/j.biochi.2024.09.016
Aleksandra V Sen'kova, Ali Bishani, Innokenty A Savin, Marina A Zenkova, Elena L Chernolovskaya
{"title":"Effect of immunostimulatory RNA on the fibrosis development in Bleomycin- or LPS-induced mouse models.","authors":"Aleksandra V Sen'kova, Ali Bishani, Innokenty A Savin, Marina A Zenkova, Elena L Chernolovskaya","doi":"10.1016/j.biochi.2024.09.016","DOIUrl":"10.1016/j.biochi.2024.09.016","url":null,"abstract":"<p><p>Previously, we described a 19-base pair double-stranded RNA with 3'-trinucleotide overhangs, acting as immunostimulatory RNA (isRNA). This molecule demonstrated notable antiproliferative effects on cancer cells, inhibited tumor growth, and elicited immunostimulatory and antiviral responses by inducing cytokine and interferon production. Within this study, we compared the efficiency of lung fibrosis development, initiated in mice by BLM or LPS using different schemes of induction. Then we compared the effect of isRNA used in a preventive or therapeutic regimen on the development of fibrosis in selected BLM- and LPS-induced mouse models and showed that isRNA can be used in pathological conditions accompanied by the development of inflammation and the risk of fibrosis formation, without adverse side effects. Prophylactic regimen of isRNA application is beneficial for prevention of the development of pulmonary fibrosis.</p>","PeriodicalId":93898,"journal":{"name":"Biochimie","volume":" ","pages":"9-18"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142373751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiochimiePub Date : 2025-02-01Epub Date: 2024-10-24DOI: 10.1016/j.biochi.2024.10.016
Sabita Rangra, Kamal Krishan Aggarwal
{"title":"Characterization and kinetics of a cathepsin B-inhibiting protein from Musa acuminata Colla peel.","authors":"Sabita Rangra, Kamal Krishan Aggarwal","doi":"10.1016/j.biochi.2024.10.016","DOIUrl":"10.1016/j.biochi.2024.10.016","url":null,"abstract":"<p><p>Hyperexpression of cathepsin B caused by an imbalance of endogenous inhibitors is involved in multiple pathologies, hence making it a key therapeutic target. Protease inhibitors are effective biomolecules that regulate protease activities and are considered potential therapeutic agents in various diseases. Plant protease inhibitors have been reported as an effective complementary alternative drug. A proteinaceous cathepsin B inhibitor (CBI-BP) has been isolated from Musa acuminata Colla (banana) peel with a molecular weight of 27.9 kDa on SDS-PAGE. The purity of the CBI-BP was confirmed on the native- PAGE. The isolated CBI-BP showed an IC<sub>50</sub> value of 8.14 μg and a K<sub>i</sub> value of 10.59 μg (0.19 μM). Cathepsin B inhibition kinetics indicated that CBI-BP follows a mixed-type of cathepsin B inhibition. Its inhibition activity was also confirmed by reverse zymography. The inhibitor was stable from pH 2.6-10.0 with maximum activity at pH 7.2, temperature 25-100 °C and exhibited thermostability for 60 min at 70 °C. MALDI/TOF/MS analysis of CBI-BP showed 40 % similarity to the GH18 domain-containing protein (A0A4S8JRM9) from Musa balbisiana. Although in-silico docking studies showed binding of A0A4S8JRM9 to cathepsin B affects the binding energy of the substrate to cathepsin B but is not reported for any anti-cathepsin B activity. This suggests that isolated CBI-BP might be a novel protein with anti-cathepsin B activity. Thus the isolated CBI-BP may be further explored as possible anti-cathepsin B drug.</p>","PeriodicalId":93898,"journal":{"name":"Biochimie","volume":" ","pages":"141-150"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142514568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiochimiePub Date : 2025-02-01Epub Date: 2024-10-09DOI: 10.1016/j.biochi.2024.10.007
Michaela Dobrovolná, Jean-Louis Mergny, Václav Brázda
{"title":"Complete analysis of G-quadruplex forming sequences in the gapless assembly of human chromosome Y.","authors":"Michaela Dobrovolná, Jean-Louis Mergny, Václav Brázda","doi":"10.1016/j.biochi.2024.10.007","DOIUrl":"10.1016/j.biochi.2024.10.007","url":null,"abstract":"<p><p>Recent advancements have finally delivered a complete human genome assembly, including the elusive Y chromosome. This accomplishment closes a significant knowledge gap. Prior efforts were hampered by challenges in sequencing repetitive DNA structures such as direct and inverted repeats. We used the G4Hunter algorithm to analyze the presence of G-quadruplex forming sequences (G4s) within the current human reference genome (GRCh38) and the new telomere-to-telomere (T2T) Y chromosome assemblies. This analysis served a dual purpose: identifying the location of potential G4s within the genomes and exploring their association with functionally annotated sequences. Compared to GRCh38, the T2T assembly exhibited a significantly higher prevalence of G-quadruplex forming sequences. Notably, these repeats were abundantly located around precursor RNA, exons, genes, and within protein binding sites. This remarkable co-occurrence of G4-forming sequences with these critical regulatory regions suggests their role in fundamental DNA regulation processes. Our findings indicate that the current human reference genome significantly underestimated the number of G4s, potentially overlooking their functional importance.</p>","PeriodicalId":93898,"journal":{"name":"Biochimie","volume":" ","pages":"49-57"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142402319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiochimiePub Date : 2025-02-01Epub Date: 2024-10-18DOI: 10.1016/j.biochi.2024.10.012
Mohammed K Hankir, Christelle Le Foll
{"title":"Central nervous system pathways targeted by amylin in the regulation of food intake.","authors":"Mohammed K Hankir, Christelle Le Foll","doi":"10.1016/j.biochi.2024.10.012","DOIUrl":"10.1016/j.biochi.2024.10.012","url":null,"abstract":"<p><p>Amylin is a peptide hormone co-released with insulin from pancreatic β-cells during a meal and primarily serves to promote satiation. While the caudal hindbrain was originally implicated as a major site of action in this regard, it is becoming increasingly clear that amylin recruits numerous central nervous system pathways to exert multifaceted effects on food intake. In this Review, we discuss the evidence derived from preclinical studies showing that amylin and the related peptide salmon calcitonin (sCT) directly or indirectly target genetically distinct neurons in the caudal hindbrain (nucleus tractus solitarius and area postrema), rostral hindbrain (lateral parabrachial nucleus), midbrain (lateral dorsal tegmentum and ventral tegmental area) and hypothalamus (arcuate nucleus and parasubthalamic nucleus) via activation of amylin and/or calcitonin receptors. Given that the stable amylin analogue cagrilintide is under clinical development for the treatment of obesity, it is important to determine whether this drug recruits overlapping or distinct central nervous system pathways to that of amylin and sCT with implications for minimising any aversive effects it potentially causes. Such insight will also be important to understand how amylin and sCT analogues synergize with other molecules as part of dual or triple agonist therapies for obesity, especially the glucagon-like peptide 1 receptor (GLP-1R) agonist semaglutide, which has been shown to synergistically lower body weight with cagrilintide (CagriSema) in clinical trials.</p>","PeriodicalId":93898,"journal":{"name":"Biochimie","volume":" ","pages":"95-104"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142482916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Human anti-apoptotic Bcl-2 and Bcl-xL proteins protect yeast cells from aging induced oxidative stress.","authors":"Ayşenur Güler, Berna Kavakcıoğlu Yardımcı, Nihal Şimşek Özek","doi":"10.1016/j.biochi.2024.10.009","DOIUrl":"10.1016/j.biochi.2024.10.009","url":null,"abstract":"<p><p>Aging is a degenerative, biological, and time-dependent process that affects all organisms. Yeast aging is a physiological phenomenon characterized by the progressive transformation of yeast cells, resulting in modifications to their viability and vitality. Aging in yeast cells is comparable to that in higher organisms in some respects; however, due to their straightforward and well-characterized genetic makeup, these cells present unique advantages when it comes to researching the aging process. Here, we assessed the impact of human anti-apoptotic Bcl-2 and Bcl-xL proteins on aging using a yeast model. The findings clearly showed that these proteins exhibited remarkable anti-aging properties in yeast cells. Our data indicate that the presence of both proteins enhanced the reproductive survival of aging cells, likely by effecting the components functioning as both pro- and anti-oxidants, depending on the stage of yeast cell lifespan. Both proteins partially protected yeast cells from aging-related morphological deformations and cellular damage during the aging period. In particular, Bcl-xL expressing yeast cells reached the maximum activity levels for almost all of the major antioxidant enzymes and the total antioxidant status on the 8th day of lifespan and could provide effective protection at the latest stage of the investigated aging period. The chemometric data analysis of IR spectra confirmed the findings of the morphological and biochemical analyses. In this regard, specifically, understanding the mechanism of action on the cellular redox state of Bcl-xL in yeast may facilitate comprehension of its indirect antioxidant function in higher eukaryotes.</p>","PeriodicalId":93898,"journal":{"name":"Biochimie","volume":" ","pages":"69-83"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142482920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}