{"title":"CCDC50 mediates the clearance of protein aggregates to prevent cellular proteotoxicity.","authors":"Yu Ye, Penghui Jia, Jiafan Miao, Yicheng Wang, Zibo Li, Yuxin Lin, Miao He, Shurui Liu, Bi-Rong Zheng, Junyu Wu, Ji'an Pan, Chun-Mei Li, Panpan Hou, Deyin Guo","doi":"10.1080/15548627.2024.2367183","DOIUrl":"10.1080/15548627.2024.2367183","url":null,"abstract":"<p><p>Protein aggregation caused by the disruption of proteostasis will lead to cellular cytotoxicity and even cell death, which is implicated in multiple neurodegenerative diseases. The elimination of aggregated proteins is mediated by selective macroautophagy receptors, which is termed aggrephagy. However, the identity and redundancy of aggrephagy receptors in recognizing substrates remain largely unexplored. Here, we find that CCDC50, a highly expressed autophagy receptor in brain, is recruited to proteotoxic stresses-induced polyubiquitinated protein aggregates and ectopically expressed aggregation-prone proteins. CCDC50 recognizes and further clears these cytotoxic aggregates through autophagy. The ectopic expression of CCDC50 increases the tolerance to stress-induced proteotoxicity and hence improved cell survival in neuron cells, whereas CCDC50 deficiency caused accumulation of lipid deposits and polyubiquitinated protein conjugates in the brain of one-year-old mice. Our study illustrates how aggrephagy receptor CCDC50 combats proteotoxic stress for the benefit of neuronal cell survival, thus suggesting a protective role in neurotoxic proteinopathy.<b>Abbreviations</b>: AD: Alzheimer disease; ALS: amyotrophic lateral sclerosis; ATG5: autophagy related 5; BODIPY: boron-dipyrromethene; CASP3: caspase 3; CCDC50: coiled-coil domain containing 50; CCT2: chaperonin containing TCP1 subunit 2; CHX: cycloheximide; CQ: chloroquine; CRISPR: clustered regulatory interspaced short palindromic repeat; Cas9: CRISPR-associated system 9; DAPI: 4',6-diamidino-2-phenylindole; FK2: Anti-ubiquitinylated proteins antibody, clone FK2; FUS: FUS RNA binding protein; GFP: green fluorescent protein; HD: Huntington disease; HTT: huntingtin; KEGG: Kyoto Encyclopedia of Genes and Genomes; LDS: LIR-docking site; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAPT/tau: microtubule associated protein tau; MIU: motif interacting with ubiquitin; NBR1: NBR1, autophagy cargo receptor; OPTN: optineurin; PD: Parkinson disease; PI: propidium iodide; ROS: reactive oxygen species; SOD1: superoxide dismutase 1; SQSTM1/p62: sequestosome 1; TAX1BP1: Tax1 binding protein 1; Ub: ubiquitin; UDS: UIM-docking site; UIM: ubiquitin interacting motif; UPS: ubiquitin-proteasome system.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141312513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Individual Atg8 paralogs exhibit unique properties in <i>streptococcus pneumoniae</i>-induced hierarchical autophagy.","authors":"Sayaka Shizukuishi, Michinaga Ogawa, Yukihiro Akeda","doi":"10.1080/15548627.2024.2375707","DOIUrl":"10.1080/15548627.2024.2375707","url":null,"abstract":"<p><p>Individual Atg8 (autophagy related 8) paralogs, comprising MAP1LC3A/LC3A, LC3B, LC3C, GABARAP, GABARAPL1 and GABARAPL2/GATE16, play a crucial role in canonical macroautophagy/autophagy. However, their functions remain unclear owing to functional redundancy. In a previous study, we reported that intracellular <i>Streptococcus pneumoniae</i> triggers hierarchical autophagy in response to bacterial infection. This process commences with the induction of conjugation of Atg8 paralogs (Atg8s) to single membranes (CASM), followed by CASM shedding and subsequent induction of xenophagy. In our recent study, we performed functional analysis of Atg8s during pneumococci-induced hierarchical autophagy. Our findings suggest that LC3A and GABARAPL1 are crucial for CASM induction, whereas GABARAPL2 and GABARAP play sequential roles in CASM shedding and subsequent induction of xenophagy, respectively.<b>Abbreviation</b>: Atg8: autophagy related 8; Atg8s: Atg8 paralogs; CASM: conjugation of Atg8s to single membranes; mpi: minutes post-infection; mpi: minutes post-infection; PcAV: pneumococci-containing autophagic vesicles; PcLV: LC3-associated phagosome (LAPosome)-like vacuole; PcV: pneumococci-containing vesicles; Sp: <i>S. pneumoniae</i>.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141499847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AutophagyPub Date : 2024-11-01Epub Date: 2024-07-10DOI: 10.1080/15548627.2024.2371708
Nitin Sai Beesabathuni, Matthew W Kenaston, Ritika Gangaraju, Neil Alvin B Adia, Vardhan Peddamallu, Priya S Shah
{"title":"Let's talk about flux: the rising potential of autophagy rate measurements in disease.","authors":"Nitin Sai Beesabathuni, Matthew W Kenaston, Ritika Gangaraju, Neil Alvin B Adia, Vardhan Peddamallu, Priya S Shah","doi":"10.1080/15548627.2024.2371708","DOIUrl":"10.1080/15548627.2024.2371708","url":null,"abstract":"<p><p>Macroautophagy/autophagy is increasingly implicated in a variety of diseases, making it an attractive therapeutic target. However, many aspects of autophagy are not fully understood and its impact on many diseases remains debatable and context-specific. The lack of systematic and dynamic measurements in these cases is a key reason for this ambiguity. In recent years, Loos et al. 2014 and Beesabathuni et al. 2022 developed methods to quantitatively measure autophagy holistically. In this commentary, we pose some of the unresolved biological questions regarding autophagy and consider how quantitative measurements may address them. While the applications are ever-expanding, we provide specific use cases in cancer, virus infection, and mechanistic screening. We address how the rate measurements themselves are central to developing cancer therapies and present ways in which these tools can be leveraged to dissect the complexities of virus-autophagy interactions. Screening methods can be combined with rate measurements to mechanistically decipher the labyrinth of autophagy regulation in cancer and virus infection. Taken together, these approaches have the potential to illuminate the underlying mechanisms of various diseases.<b>Abbreviation</b> MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; R<sub>1</sub>: rate of autophagosome formation; R<sub>2</sub>: rate of autophagosome-lysosome fusion; R<sub>3</sub>: rate of autolysosome turnover.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141565338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AutophagyPub Date : 2024-11-01Epub Date: 2024-07-01DOI: 10.1080/15548627.2024.2367191
Zheng Yin, Jishou Zhang, Mengmeng Zhao, Jianfang Liu, Yao Xu, Shanshan Peng, Wei Pan, Cheng Wei, Zihui Zheng, Siqi Liu, Juan-Juan Qin, Jun Wan, Menglong Wang
{"title":"EDIL3/Del-1 prevents aortic dissection through enhancing internalization and degradation of apoptotic vascular smooth muscle cells.","authors":"Zheng Yin, Jishou Zhang, Mengmeng Zhao, Jianfang Liu, Yao Xu, Shanshan Peng, Wei Pan, Cheng Wei, Zihui Zheng, Siqi Liu, Juan-Juan Qin, Jun Wan, Menglong Wang","doi":"10.1080/15548627.2024.2367191","DOIUrl":"10.1080/15548627.2024.2367191","url":null,"abstract":"<p><p>Thoracic aortic dissection (TAD) is a severe disease, characterized by numerous apoptotic vascular smooth muscle cells (VSMCs). EDIL3/Del-1 is a secreted protein involved in macrophage efferocytosis in acute inflammation. Here, we aimed to investigate whether EDIL3 promoted the internalization and degradation of apoptotic VSMCs during TAD. The levels of EDIL3 were decreased in the serum and aortic tissue from TAD mice. Global <i>edil3</i> knockout (<i>edil3</i><sup>-/-</sup>) mice and <i>edil3</i><sup>-/-</sup> bone marrow chimeric mice exhibited a considerable exacerbation in β-aminopropionitrile monofumarate (BAPN)-induced TAD, accompanied with increased apoptotic VSMCs accumulating in the damaged aortic tissue. Two types of phagocytes, RAW264.7 cells and bone marrow-derived macrophages (BMDMs) were used for in vitro efferocytosis assay. <i>edil3</i>-deficient phagocytes exhibited inefficient internalization and degradation of apoptotic VSMCs. Instead, EDIL3 promoted the internalization phase through interacting with phosphatidylserine (PtdSer) on apoptotic VSMCs and binding to the macrophage ITGAV/α<sub>v</sub>-ITGB3/β<sub>3</sub> integrin. In addition, EDIL3 accelerated the degradation phase through activating LC3-associated phagocytosis (LAP). Mechanically, following the engulfment, EDIL3 enhanced the activity of SMPD1/acid sphingomyelinase in the phagosome through blocking ITGAV-ITGB3 integrin, which facilitates phagosomal reactive oxygen species (ROS) production by NAPDH oxidase CYBB/NOX2. Furthermore, exogenous EDIL3 supplementation alleviated BAPN-induced TAD and promoted apoptotic cell clearance. EDIL3 may be a novel factor for the prevention and treatment of TAD.<b>Abbreviations:</b> BAPN: β-aminopropionitrile monofumarate; BMDM: bone marrow-derived macrophage; C12FDG: 5-dodecanoylaminofluorescein-di-β-D-galactopyranoside; CTRL: control; CYBB/NOX2: cytochrome b-245, beta polypeptide; DCFH-DA: 2',7'-dichlorofluorescin diacetate; EDIL3/Del-1: EGF-like repeats and discoidin I-like domains 3; EdU: 5-ethynyl-2'-deoxyuridine; EVG: elastic van Gieson; H&E: hematoxylin and eosin; IL: interleukin; LAP: LC3-associated phagocytosis; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; NAC: N-acetylcysteine; PtdSer: phosphatidylserine; rEDIL3: recombinant EDIL3; ROS: reactive oxygen species; SMPD1: sphingomyelin phosphodiesterase 1; TAD: thoracic aortic dissection; TEM: transmission electron microscopy; VSMC: vascular smooth muscle cell; WT: wild-type.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141319258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AutophagyPub Date : 2024-11-01Epub Date: 2024-08-11DOI: 10.1080/15548627.2024.2389483
Yanyang Wu, Cong Yi
{"title":"Ca<sup>2+</sup> as an essential signaling molecule controlling Snf1-mediated Atg1 activation.","authors":"Yanyang Wu, Cong Yi","doi":"10.1080/15548627.2024.2389483","DOIUrl":"10.1080/15548627.2024.2389483","url":null,"abstract":"<p><p>Macroautophagy/autophagy is essential for maintaining glucose homeostasis, but the mechanisms by which cells sense glucose starvation and initiate autophagy are not yet fully understood. Recently, we reported that the assembly of a Ca<sup>2+</sup>-triggered Snf1-Bmh1/Bmh2-Atg11 complex initiates autophagy in response to glucose starvation. Our research reveals that during glucose starvation, the efflux of vacuolar Ca<sup>2+</sup> increases cytoplasmic Ca<sup>2+</sup> levels, which activates the protein kinase Rck2. Rck2-mediated phosphorylation of Atg11 enhances its interaction with Bmh1 and Bmh2. This interaction recruits the Snf1-Sip1-Snf4 complex, which is located on the vacuolar membrane, to the phagophore assembly site (PAS), leading to the activation of Atg1 and the initiation of autophagy. In summary, we have identified a previously unrecognized signaling pathway involved in glucose starvation-induced autophagy, where Ca<sup>2+</sup> acts as a fundamental signaling molecule that links energy stress to the formation of the autophagy initiation complex.<b>Abbreviation</b>: AMPK: AMP-activated protein kinase; <i>ATG</i>: autophagy related; co-IP: co-immunoprecipitation; MAPK: mitogen-activated protein kinase; PAS: phagophore assembly site; ULK1: unc-51 like autophagy activating kinase 1.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141895084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AutophagyPub Date : 2024-11-01Epub Date: 2024-09-29DOI: 10.1080/15548627.2024.2395144
Zhong Yan Gan, David Komander, Sylvie Callegari
{"title":"Reassessing kinetin's effect on PINK1 and mitophagy.","authors":"Zhong Yan Gan, David Komander, Sylvie Callegari","doi":"10.1080/15548627.2024.2395144","DOIUrl":"10.1080/15548627.2024.2395144","url":null,"abstract":"<p><p>Substantial evidence indicates that a decline in mitochondrial health contributes to the development of Parkinson disease. Accordingly, therapeutic stimulation of mitophagy, the autophagic turnover of dysfunctional mitochondria, is a promising approach to treat Parkinson disease. An attractive target in such a setting is PINK1, a protein kinase that initiates the mitophagy cascade. Previous reports suggest that PINK1 kinase activity can be enhanced by kinetin triphosphate (KTP), an enlarged ATP analog that acts as an alternate phosphate donor for PINK1 during phosphorylation. However, the mechanism of how KTP could exert such an effect on PINK1 was unclear. In a recent study, we demonstrate that contrary to previous thinking, KTP cannot be used by PINK1. Nucleotide-bound PINK1 structures indicate that KTP would clash with the back of PINK1's ATP binding pocket, and enlarging this pocket by mutagenesis is required to enable PINK1 to use KTP. Strikingly, mutation shifts PINK1's nucleotide preference from ATP to KTP. Similar results could be demonstrated in cells with kinetin, a membrane-permeable precursor of KTP. These results overturn the previously accepted mechanism of how kinetin enhances mitophagy and indicate that kinetin and its derivatives instead function through a currently unidentified mechanism.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142334259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AutophagyPub Date : 2024-11-01Epub Date: 2024-07-10DOI: 10.1080/15548627.2024.2373675
Thomas Bajaj, Tim Ebert, Larissa J Dillmann, Clara Sokn, Nils C Gassen, Jakob Hartmann
{"title":"SKArred 2 death: neuroinflammatory breakdown of the hippocampus.","authors":"Thomas Bajaj, Tim Ebert, Larissa J Dillmann, Clara Sokn, Nils C Gassen, Jakob Hartmann","doi":"10.1080/15548627.2024.2373675","DOIUrl":"10.1080/15548627.2024.2373675","url":null,"abstract":"<p><p>A multitude of cellular responses to intrinsic and extrinsic signals converge on macroautophagy/autophagy, a conserved catabolic process that degrades cytoplasmic constituents and organelles in the lysosome, particularly during starvation or stress. In addition to protein degradation, autophagy is deeply interconnected with unconventional protein secretion and polarized sorting at multiple levels within eukaryotic cells. Secretory autophagy (SA) has been recognized as a novel mechanism in which autophagosomes fuse with the plasma membrane and actively participate in the secretion of a series of cytosolic proteins, ranging from tissue remodeling factors to inflammatory molecules of the IL1 family. SA is partially controlled by the glucocorticoid-responsive, HSP90 co-chaperone FKBP5 and members of the SNARE proteins, SEC22B, SNAP23, SNAP29, STX3 and STX4. SA deregulation is implicated in several inflammatory pathologies, including cancer, cell death and degeneration. However, the key molecular mechanisms governing SA and its regulation remain elusive, as does its role in neuroinflammation and neurodegeneration. To further characterize SA and pinpoint its involvement in neuroinflammatory processes, we studied SA-relevant protein interaction networks in mouse brain, microglia and human postmortem brain tissue from control subjects and Alzheimer disease cases. We demonstrate that SA regulates neuroinflammation-mediated neurodegeneration via SKA2 and FKBP5 signaling.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141461228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AutophagyPub Date : 2024-11-01Epub Date: 2024-07-01DOI: 10.1080/15548627.2024.2368335
Hilary Grosso Jasutkar, Elizabeth M Wasserlein, Azeez Ishola, Nicole Litt, Agnieszka Staniszewski, Ottavio Arancio, Ai Yamamoto
{"title":"Adult-onset deactivation of autophagy leads to loss of synapse homeostasis and cognitive impairment, with implications for alzheimer disease.","authors":"Hilary Grosso Jasutkar, Elizabeth M Wasserlein, Azeez Ishola, Nicole Litt, Agnieszka Staniszewski, Ottavio Arancio, Ai Yamamoto","doi":"10.1080/15548627.2024.2368335","DOIUrl":"10.1080/15548627.2024.2368335","url":null,"abstract":"<p><p>A growing number of studies link dysfunction of macroautophagy/autophagy to the pathogenesis of diseases such as Alzheimer disease (AD). Given the global importance of autophagy for homeostasis, how its dysfunction can lead to specific neurological changes is puzzling. To examine this further, we compared the global deactivation of autophagy in the adult mouse using the <i>atg7</i>iKO with the impact of AD-associated pathogenic changes in autophagic processing of synaptic proteins. Isolated forebrain synaptosomes, rather than total homogenates, from <i>atg7</i>iKO mice demonstrated accumulation of synaptic proteins, suggesting that the synapse might be a vulnerable site for protein homeostasis disruption. Moreover, the deactivation of autophagy resulted in impaired cognitive performance over time, whereas gross locomotor skills remained intact. Despite deactivation of autophagy for 6.5 weeks, changes in cognition were in the absence of cell death or synapse loss. In the symptomatic APP PSEN1 double-transgenic mouse model of AD, we found that the impairment in autophagosome maturation coupled with diminished presence of discrete synaptic proteins in autophagosomes isolated from these mice, leading to the accumulation of one of these proteins in the detergent insoluble protein fraction. This protein, SLC17A7/Vglut, also accumulated in <i>atg7</i>iKO mouse synaptosomes. Taken together, we conclude that synaptic autophagy plays a role in maintaining protein homeostasis, and that while decreasing autophagy interrupts normal cognitive function, the preservation of locomotion suggests that not all circuits are affected similarly. Our data suggest that the disruption of autophagic activity in AD may have relevance for the cognitive impairment in this adult-onset neurodegenerative disease. <b>Abbreviations</b>: 2dRAWM: 2-day radial arm water maze; AD: Alzheimer disease; Aβ: amyloid-beta; AIF1/Iba1: allograft inflammatory factor 1; APP: amyloid beta precursor protein; ATG7: autophagy related 7; AV: autophagic vacuole; CCV: cargo capture value; Ctrl: control; DLG4/PSD-95: discs large MAGUK scaffold protein 4; GFAP: glial fibrillary acidic protein; GRIN2B/NMDAR2b: glutamate ionotropic receptor NMDA type subunit 2B; LTD: long-term depression; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; m/o: months-old; PNS: post-nuclear supernatant; PSEN1/PS1: presenilin 1; SHB: sucrose homogenization buffer; SLC32A1/Vgat: solute carrier family 32 member 1; SLC17A7/Vglut1: solute carrier family 17 member 7; SNAP25: synaptosome associated protein 25; SQSTM1/p62: sequestosome 1; SYN1: synapsin I; SYP: synaptophysin ; SYT1: synaptotagmin 1; Tam: tamoxifen; VAMP2: vesicle associated membrane protein 2; VCL: vinculin; wks: weeks.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141473454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AutophagyPub Date : 2024-11-01Epub Date: 2024-08-28DOI: 10.1080/15548627.2024.2392464
Wenping Zeng, Canjun Li, Lili Qu, Chunlei Cang
{"title":"Optogenetic manipulation of lysosomal physiology and autophagic activity.","authors":"Wenping Zeng, Canjun Li, Lili Qu, Chunlei Cang","doi":"10.1080/15548627.2024.2392464","DOIUrl":"10.1080/15548627.2024.2392464","url":null,"abstract":"<p><p>Lysosomes are essential degradative organelles and signaling hubs within cells, playing a crucial role in the regulation of macroautophagy/autophagy. Dysfunction of lysosomes and impaired autophagy are closely associated with the development of various neurodegenerative diseases. Enhancing lysosomal activity and boosting autophagy levels holds great promise as effective strategies for treating these diseases. However, there remains a lack of methods to dynamically regulate lysosomal activity and autophagy levels in living cells or animals. In our recent work, we applied optogenetics to manipulate lysosomal physiology and function, developing three lysosome-targeted optogenetic tools: lyso-NpHR3.0, lyso-ArchT, and lyso-ChR2. These new actuators enable light-dependent regulation of key aspects such as lysosomal membrane potential, lumenal pH, hydrolase activity, degradation processes, and Ca<sup>2+</sup> dynamics in living cells. Notably, lyso-ChR2 activation induces autophagy via the MTOR pathway while it promotes Aβ clearance through autophagy induction in cellular models of Alzheimer disease. Furthermore, lyso-ChR2 activation reduces Aβ deposition and alleviates Aβ-induced paralysis in <i>Caenorhabditis elegans</i> models of Alzheimer disease. Our lysosomal optogenetic actuators offer a novel method for dynamically regulating lysosomal physiology and autophagic activity in living cells and animals.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141989768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}