AutophagyPub Date : 2025-06-01Epub Date: 2025-02-24DOI: 10.1080/15548627.2025.2468907
Kouta Hamamoto, Xinwen Liang, David M Opozda, Hong-Gang Wang, Yoshinori Takahashi
{"title":"Physiological insights into ESCRT-mediated phagophore closure: potential cytoprotective roles for ATG8ylated membranes.","authors":"Kouta Hamamoto, Xinwen Liang, David M Opozda, Hong-Gang Wang, Yoshinori Takahashi","doi":"10.1080/15548627.2025.2468907","DOIUrl":"10.1080/15548627.2025.2468907","url":null,"abstract":"<p><p>The endosomal sorting complex required for transport (ESCRT) machinery is a membrane abscission system that mediates various intracellular membrane remodeling processes, including macroautophagy/autophagy. In our recent study, we established the unique requirement of the ubiquitin E2 variant-like (UEVL) domain of the ESCRT-I subunit VPS37A for phagophore closure, the final step in autophagosome biogenesis, and determined the physiological impact of systemically inhibiting closure by targeting this region in mice. While the mutant mice exhibited phenotypes similar to those reported in mice deficient in generating ATG8 (mammalian Atg8 homologs)-conjugated (ATG8ylated) phagophores, certain phenotypes, such as neonatal lethality and liver injury, were found to be notably milder. Further investigation revealed that ATG8ylated phagophores promote TBK1-dependent SQSTM1 phosphorylation and droplet formation, leading to the formation of large insoluble aggregates upon closure inhibition. These findings suggest potential roles for ATG8ylated membranes in mitigating proteotoxicity by efficiently concentrating and sequestering soluble, reactive microaggregates and converting them into less reactive, insoluble large aggregates. The study highlights VPS37A UEVL mutant mice as a model for investigating the physiological and pathological roles of phagophores that extend beyond degradation.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"1387-1389"},"PeriodicalIF":0.0,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143461067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"SESN1 negatively regulates STING1 to maintain innate immune homeostasis.","authors":"Lingxiao Xu, Hongqian Zhang, Zuocheng Qiu, Shijing Wang, Chaoyang Wang, Hao Cheng, Qianya Wan, Mingyu Pan","doi":"10.1080/15548627.2025.2463148","DOIUrl":"10.1080/15548627.2025.2463148","url":null,"abstract":"<p><p>STING1 is a central hub protein of CGAS-STING1 signaling which is important signaling axis to sense DNA for the host against pathogens infection through regulating type I interferon (IFN-I) production. However, excessive STING1 activation-induced overproduced IFN-I triggers tissue damage and autoimmune disorders. Thus, the activity of STING1 must be precisely regulated for immune homeostasis. Here, we discovered SESN1 (sestrin 1) as an essential negative regulator of STING1 to maintain immune homeostasis. Upon herpes simplex virus-1 (HSV-1) infection, the expression of SESN1 was downregulated, which enhanced potentiality to virus defense for host. Consistently, SESN1-deficient mice exhibited stronger ability against HSV-1 infection compared to wild-type littermates. Additionally, we found the expression of SESN1 was decreased in systemic lupus erythematosus (SLE) patients and <i>trex1</i> KO mouse model of autoimmune disease. Intriguingly, the replenishment of SESN1 effectively impressed IFN-I production and autoimmune responses in the PBMCs of human SLE specimens and the <i>trex1</i> KO mouse model both <i>in vitro</i> and <i>in vivo</i>. Mechanistically, SESN1 targeted STING1 and promoted STING1 autophagic degradation by facilitating the interaction of SQSTM1/p62 and STING1. Together, our study uncovers a crucial role of SESN1 for immune homeostasis to balance anti-virus and autoimmunity by regulating STING1. SESN1 might be a potential therapeutic target for infectious and autoimmune diseases.<b>Abbreviations</b>: BMDMs: bone marrow-derived macrophages; cGAMP: cyclic GMP-AMP; CGAS: cyclic GMP-AMP synthase; HTDNA: herring testes DNA; IFNA4: interferon alpha 4; IFNB: interferon beta; IRF3: interferon regulatory factor 3; ISD: interferon stimulatory DNA; ISGs: IFN-stimulated genes; PBMCs: peripheral blood mononuclear cells; RSAD2: radical S-adenosyl methionine domain containing 2; SLE: systemic lupus erythematosus; STING1: stimulator of interferon response cGAMP interactor 1; TBK1: TANK binding kinase 1.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"1245-1262"},"PeriodicalIF":0.0,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143411856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"CircRNA <i>GRAMD4</i> induces <i>NBR1</i> expression to promote autophagy and immune escape in renal cell carcinoma.","authors":"Mi Zhou, Minyu Chen, Zhousan Zheng, Qihao Li, Lican Liao, Yunfei Wang, Yi Xu, Guannan Shu, Junhang Luo, Taowei Yang, Jiaxing Zhang","doi":"10.1080/15548627.2025.2503560","DOIUrl":"https://doi.org/10.1080/15548627.2025.2503560","url":null,"abstract":"<p><p>The tumor microenvironment (TME) in renal cell carcinoma (RCC) frequently exhibits significant immune cell infiltration. However, tumor cells often manage to evade immune surveillance. This study revealed the mechanism by which circular RNA <i>circGRAMD4</i> regulates <i>NBR1</i>. <i>CircGRAMD4</i> is markedly elevated in RCC, and its high levels are correlated with a poor prognosis. Notably, the absence of <i>circGRAMD4</i> has been demonstrated to result in a significant inhibition of renal cancer cell growth. This inhibition has been attributed to an enhanced anti-tumor immunity mediated by CD8<sup>+</sup> T cells. Mechanistically, <i>circGRAMD4</i> interacts with the RBM4 protein, stabilizing the autophagic cargo receptor <i>NBR1</i> mRNA. This interaction promotes <i>NBR1</i> expression, which in turn leads to the degradation of MHC-I molecules through macroautophagy/autophagy pathways. Consequently, this process affects renal cancer cell antigen presentation, induces CD8<sup>+</sup> T cell dysfunction, and contributes to tumor immune escape. Moreover, by inhibiting <i>circGRAMD4</i> and using immune checkpoint blockers (ICB), the immunosuppressive TME is altered to prevent tumor immune evasion, ultimately increasing the effectiveness of ICB treatment. The discovery highlights the significant impact of <i>circGRAMD4</i> on RCC immune escape and proposes that blocking <i>circGRAMD4</i> could serve as a promising immunotherapy strategy when combined with ICB to enhance patient outcomes.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"1-21"},"PeriodicalIF":0.0,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144082724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AutophagyPub Date : 2025-05-15DOI: 10.1080/15548627.2025.2506292
Hayder M Al-Kuraishy, Majid S Jabir, Ali I Al-Gareeb, Ali K Albuhadily, Daniel J Klionsky, Mayyadah F Rafeeq
{"title":"Epilepsy and autophagy modulators: a therapeutic split.","authors":"Hayder M Al-Kuraishy, Majid S Jabir, Ali I Al-Gareeb, Ali K Albuhadily, Daniel J Klionsky, Mayyadah F Rafeeq","doi":"10.1080/15548627.2025.2506292","DOIUrl":"https://doi.org/10.1080/15548627.2025.2506292","url":null,"abstract":"<p><p>Epilepsy is a neurological disease characterized by repeated unprovoked seizure. Epilepsy is controlled by anti-epileptic drugs (AEDs); however, one third of epileptic patients have symptoms that are not controlled by AEDs in a condition called refractory epilepsy. Dysregulation of macroautophagy/autophagy is involved in the pathogenesis of epilepsy. Autophagy prevents the development and progression of epilepsy through regulating the balance between inhibitory and excitatory neurotransmitters. Induction of autophagy and autophagy-related proteins could be a novel therapeutic strategy in the management of epilepsy. Despite the protective role of autophagy against epileptogenesis and epilepsy, its role in status epilepticus is perplexing and might reflect its nature as a double-edged sword. Autophagy inducers play a critical role in reducing seizure frequency and severity, and could be an adjuvant treatment in the management of epilepsy. However, autophagy inhibitors also have an anticonvulsant effect. Therefore, the aim of the present mini-review is to discuss the potential role of autophagy in the pathogenesis of epileptogenesis and epilepsy, and how autophagy modulators affect epileptogenesis and epilepsy.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144082728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AutophagyPub Date : 2025-05-14DOI: 10.1080/15548627.2025.2503564
Bingxin Liu, Xiaoyan Tian, Linrun Li, Na Jiang, Min Cheng, Jin Zhu, Zhiwei Wu
{"title":"SFTSV induces liver ferroptosis through m6A-related ferritinophagy.","authors":"Bingxin Liu, Xiaoyan Tian, Linrun Li, Na Jiang, Min Cheng, Jin Zhu, Zhiwei Wu","doi":"10.1080/15548627.2025.2503564","DOIUrl":"https://doi.org/10.1080/15548627.2025.2503564","url":null,"abstract":"<p><p>Severe fever with thrombocytopenia syndrome (SFTS) is a widely prevalent infectious disease caused by severe fever with thrombocytopenia syndrome virus (SFTSV). SFTSV infection carries a high mortality rate and has emerged to be a public health concern. SFTSV infection could induce many classical cell death pathways. Ferroptosis, a novel iron-dependent form of regulated cell death, is shown to participate in various biological processes and is considered as a new therapeutic target. In the current study, we reported that SFTSV infection perturbed the classical redox cycle by downregulating the expression of GPX4, SLC7A11 and GSH, and increasing the level of reactive oxygen species (ROS) and malondialdehyde (MDA). Interestingly, we observed that the elevation of <i>ATG5</i> mRNA m6A modification after SFTSV infection and mutation of the m6A-sites significantly rescued SFTSV infection-induced ferritinophagy. We further found that the NSs protein of SFTSV played a major role in driving the ferritinophagy. Finally, we found that ferroptosis inhibitor ferrostatin-1 prevented ferroptosis and suppressed SFTSV infection both <i>in vitro</i> and <i>in vivo</i> models. In summary, our study demonstrated that SFTSV infection could induce ferroptosis in liver, and m6A modified AT<i>G</i>5 mediated ferritinophagy to facilitate this process. Targeting ferroptosis may serve as a potential therapy for the treatment of SFTS.<b>Abbreviations:</b> ATG5: autophagy related 5; Baf-A1: bafilomycin A<sub>1</sub>; Fer-1: ferrostatin-1; Fe<sup>2+</sup>: ferrous iron; FTH1: ferritin heavy chain 1; GOT1/AST: glutamic-oxaloacetic transaminase 1; GPT/ALT: glutamic - pyruvic transaminase; GSH: glutathione; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MDA: malondialdehyde; NCOA4: nuclear receptor coactivator 4; ROS: reactive oxygen species; SFTSV: severe fever with thrombocytopenia virus; SQSTM1/p62: sequestosome 1.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"1-14"},"PeriodicalIF":0.0,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144058162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"SENP2-mediated deSumoylation of NCOA4 protects against ferritinophagy-dependent ferroptosis in myocardial ischemia-reperfusion injury.","authors":"Siyuan Xue, Jiaxin Zeng, Jingzhe Hao, Wanzhi Cai, Yuxuan Ding, Yuelin Chao, Zong Miao, Guanhua Xu, Lei Xu, Zeyu Jiang","doi":"10.1080/15548627.2025.2504792","DOIUrl":"https://doi.org/10.1080/15548627.2025.2504792","url":null,"abstract":"<p><p>Myocardial ischemia-reperfusion (MI/R) injury is a leading cause of morbidity and mortality around the world, characterized by injury to cardiomyocytes that leads to various forms of cell death, including necrosis, apoptosis, autophagy, and ferroptosis. Preventing cell death is crucial for preserving cardiac function after ischemia-reperfusion injury. Ferroptosis, a novel type of cell death, has recently been identified as a key driver of cardiomyocyte death following MI/R. However, the complex regulatory mechanisms involved in ferroptosis remain unclear. Here, we found that SENP2 expression decreased following myocardial ischemia reperfusion injury. Deletion of <i>SENP2</i> increased cardiomyocyte ferroptosis and hindered cardiac function recovery after MI/R injury, whereas overexpression of SENP2 significantly reduced cardiomyocyte ferroptosis and mitigated MI/R injury. Mechanistically, SENP2 removed the SUMOylation of NCOA4 modified by SUMO1 at K81, K343, and K600 sites. The level of NCOA4 SUMOylation regulated ferritinophagy-dependent ferroptosis through affecting NCOA4 protein stability. SENP2-mediated NCOA4 deSUMOylation alleviated the interaction between NCOA4 and OTUB1, which directly deubiquitinated NCOA4 and maintained its protein stability. Furthermore, administration of SENP2 in the animal MI/R model reduced ferroptosis events, protected the injured myocardium and promoted cardiac function recovery. Collectively, our results demonstrate that SENP2 catalyzes deSUMOylation of NCOA4, alleviates ferritinophagy-mediated ferroptosis in an OTUB1-dependent manner, thereby facilitating cardiac function recovery following MI/R. These findings suggest a potential therapeutic strategy for MI/R treatment.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144032100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AutophagyPub Date : 2025-05-14DOI: 10.1080/15548627.2025.2503578
Hana Popelka, Daniel J Klionsky
{"title":"Visualization of autophagic structures near solid polyQ aggregates reveals how they undermine autophagy.","authors":"Hana Popelka, Daniel J Klionsky","doi":"10.1080/15548627.2025.2503578","DOIUrl":"https://doi.org/10.1080/15548627.2025.2503578","url":null,"abstract":"<p><p>Aggregates of polyglutamine (polyQ) repeat extensions are known markers of several, predominantly inherited, neurodegenerative diseases. Removal of polyQ is essential for cellular proteostasis and macroautophagy/autophagy has been proposed to be an important tool in the clearance of polyQ aggregates. The mechanism of recognition and encapsulation of these aggregates within autophagosomes is largely unknown. A study described in this article employed <i>in situ</i> correlative cryo-electron tomography to visualize polyQ aggregates interacting with autophagic compartments. The tomograms revealed that only amorphous polyQ, but not fibrils, are engulfed by double-membrane structures and that SQSTM1/p62 is the receptor involved in recognition of polyQ during autophagy. Solidified amorphous polyQ and subsequent fibrils arrest the normal formation of autophagosomes and impair autophagy. Findings of the study described here have implications for therapies that rely on autophagy in targeting polyQ neurodegeneration.<b>Abbreviation:</b> cryo-CLEM, cryo-correlative light and electron microscopy; cryo-ET, cryo-electron tomography; ER, endoplasmic reticulum; HD, Huntington disease; HTT, huntingtin; polyQ, polyglutamine repeats.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"1-3"},"PeriodicalIF":0.0,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144082732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AutophagyPub Date : 2025-05-09DOI: 10.1080/15548627.2025.2498506
Martin P Schwalm, Christopher Lenz, Krishna Saxena, Daniel J Klionsky, Ewgenij Proschak, Stefan Knapp
{"title":"Biochemical investigation of LC3/GABARAP-ligand interaction as an important quality measure for LC3/GABARAP-targeting small molecules: addendum to the guidelines (4th edition).","authors":"Martin P Schwalm, Christopher Lenz, Krishna Saxena, Daniel J Klionsky, Ewgenij Proschak, Stefan Knapp","doi":"10.1080/15548627.2025.2498506","DOIUrl":"https://doi.org/10.1080/15548627.2025.2498506","url":null,"abstract":"<p><p>Targeted protein degradation (TPD) represents a new therapeutic modality that allows the targeting of proteins that are considered undruggable by conventional small molecules. While TPD approaches via the ubiquitin-proteasome system are well established and validated, additional degradation pathways still require rigorous characterization. Here, we focus on macroautophagy/autophagy tethering compounds, a class of small molecules, designed to recruit cargo to LC3/GABARAP proteins for subsequent autophagosome-dependent degradation. We provide guidance for the biophysical and structural characterization of small molecule modulators for studying LC3/GABARAP-ligand interactions. In addition, we discuss potential limitations of autophagy-based TPD systems and emphasize the need for rigorous quality control in the development of LC3/GABARAP-targeting small molecules.<b>Abbreviations</b>: DSF: differential scanning fluorimetry; FP: fluorescence polarization; FRET: Förster/fluorescence resonance energy transfer; HTRF: homogeneous time-resolved fluorescence; ITC: isothermal titration calorimetry; LIR: LC3-interacting region; MGs: molecular glues; NMR: nuclear magnetic resonance; PROTACs: PROteolysis-TArgeting Chimeras; SPR: surface plasmon resonance; TPD: targeted protein degradation; TR-FRET: time-resolved Förster/fluorescence resonance energy transfer; UPS: ubiquitin-proteasome system.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"1-5"},"PeriodicalIF":0.0,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144065364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AutophagyPub Date : 2025-05-09DOI: 10.1080/15548627.2025.2499289
Hui Qian, Ming-Hua Wu, Wen-Hui Zhao, Xue-Ming Zhu, Li-Xiao Sun, Jian-Ping Lu, Daniel J Klionsky, Fu-Cheng Lin, Xiao-Hong Liu
{"title":"MoSec13 combined with MoGcn5b modulates MoAtg8 acetylation and regulates autophagy in <i>Magnaporthe oryzae</i>.","authors":"Hui Qian, Ming-Hua Wu, Wen-Hui Zhao, Xue-Ming Zhu, Li-Xiao Sun, Jian-Ping Lu, Daniel J Klionsky, Fu-Cheng Lin, Xiao-Hong Liu","doi":"10.1080/15548627.2025.2499289","DOIUrl":"https://doi.org/10.1080/15548627.2025.2499289","url":null,"abstract":"<p><p>Macroautophagy/autophagy is an evolutionarily conserved cellular degradation process that is crucial for cellular homeostasis in <i>Magnaporthe oryzae</i>. However, the precise regulatory mechanisms governing autophagy in this organism remain unclear. In this study, we found a multiregional localization of MoSec13 to the vesicle membrane, endoplasmic reticulum, nucleus, and perinucleus. MoSec13 negatively regulated autophagy through specific amino acid residues in its own WD40 structural domain by interacting with MoAtg7 and MoAtg8. We also found that the histone acetyltransferase MoGcn5b mediated the acetylation of MoAtg8 and regulated autophagy activity. Subsequently, we further determined that MoSec13 regulated the acetylation status of MoAtg8 by controlling the interaction between MoGcn5b and MoAtg8 in the nucleus. In addition, MoSec13 maintained lipid homeostasis by controlling TORC2 activity. This multilayered integration establishes MoSec13 as an essential node within the autophagic regulatory network. Our findings fill a critical gap in understanding the role of Sec13 in autophagy of filamentous fungi and provide a molecular foundation for developing new therapeutic strategies against rice blast fungus.<b>ABBREVIATIONS</b> BFA: brefeldin A; BiFC: bimolecular fluorescence complementation; CM: complete medium; CMAC: 7-amino-4-chloromethylcoumarin; Co-IP: co-immunoprecipitation; COPII: coat complex II; GFP: green fluorescent protein; HPH: hygromycin phosphotransferase; MM-N: nitrogen-starvation conditions; NPC: nuclear pore complex; PAS: phagophore assembly site; PE: phosphatidylethanolamine; UPR: unfolded protein response.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"1-18"},"PeriodicalIF":0.0,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144055275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"METTL3-dependent m<sup>6</sup>A modification of SNAP29 induces \"autophagy-mitochondrial crisis\" in the ischemic microenvironment after soft tissue transplantation.","authors":"Ningning Yang, Yingying Lai, Gaoxiang Yu, Xuzi Zhang, Jingwei Shi, Linyi Xiang, Jiacheng Zhang, Yuzhe Wu, Xiaoqiong Jiang, Xuanlong Zhang, Liangliang Yang, Weiyang Gao, Jian Ding, Xiangyang Wang, Jian Xiao, Kailiang Zhou","doi":"10.1080/15548627.2025.2493455","DOIUrl":"https://doi.org/10.1080/15548627.2025.2493455","url":null,"abstract":"<p><p>Necrosis at the ischemic distal end of flap transplants increases patients' pain and economic burden. Reactive oxygen species (ROS) and mitochondrial damage are crucial in regulating parthanatos, but the mechanisms linking disrupted macroautophagic/autophagic flux to parthanatos in ischemic flaps remain unclear. The results of western blotting, immunofluorescence staining, and a proteomic analysis revealed that the autophagic protein SNAP29 was deficient in ischemic flaps, resulting in disrupted autophagic flux, increased ROS-induced parthanatos, and aggravated ischemic flap necrosis. The use of AAV vector to restore SNAP29 <i>in vivo</i> mitigated the disruption of autophagic flux and parthanatos. Additionally, quantification of the total m<sup>6</sup>A level and RIP-qPCR, MeRIP-qPCR, and RNA stability assessments were performed to determine differential <i>Snap29</i> mRNA m<sup>6</sup>A methylation levels and mRNA stability in ischemic flaps. Various <i>in vitro</i> and <i>in vivo</i> tests were conducted to verify the ability of METTL3-mediated m<sup>6</sup>A methylation to promote SNAP29 depletion and disrupt autophagic flux. Finally, we concluded that restoring SNAP29 by inhibiting METTL3 and YTHDF2 reversed the \"autophagy-mitochondrial crisis\", defined for the first time as disrupted autophagic flux, mitochondrial damage, mitochondrial protein leakage, and the occurrence of parthanatos. The reversal of this crisis ultimately promoted the survival of ischemic flaps.<b>Abbreviations</b>: AAV = adeno-associated virus; ACTA2/α-SMA = actin alpha 2, smooth muscle, aorta; AIFM/AIF = apoptosis-inducing factor, mitochondrion-associated; ALKBH5 = alkB homolog, RNA demythelase; Baf A1 = bafilomycin A<sub>1</sub>; CQ = chloroquine; DHE = dihydroethidium; ECs = endothelial cells; F-CHP = 5-FAM-conjugated collagen-hybridizing peptide; GO = gene ontology; HUVECs = human umbilical vein endothelial cells; KEGG = Kyoto Encyclopedia of Genes and Genomes; LC-MS/MS = liquid chromatography-tandem mass spectrometry; LDBF = laser doppler blood flow; m<sup>6</sup>A = N6-methyladenosine; MAP1LC3/LC3 = microtubule-associated protein 1 light chain 3; MeRIP = methylated RNA immunoprecipitation; METTL3 = methyltransferase 3, N6-adenosine-methyltransferase complex catalytic subunit; NAC = N-acetylcysteine; OGD = oxygen glucose deprivation; PAR = poly (ADP-ribose); PARP1 = poly (ADP-ribose) polymerase family, member 1; PECAM1/CD31 = platelet/endothelial cell adhesion molecule 1; ROS = reactive oxygen species; RT-qPCR = reverse transcription quantitative polymerase chain reaction; RIP = RNA immunoprecipitation; SNAP29 = synaptosomal-associated protein 29; SNARE = soluble N-ethylmaleimide-sensitive factor attachment protein receptor; SQSTM1 = sequestosome 1; SRAMP = sequence-based RNA adenosine methylation site predicting; STX17 = syntaxin 17; TMT = tandem mass tag; TUNEL = terminal deoxynucleotidyl transferase dUTP nick end labeling; VAMP8 = vesicle-associated membra","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"1-24"},"PeriodicalIF":0.0,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144055272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}