ACS agricultural science & technology最新文献

筛选
英文 中文
Agronomic, Nutritional Traits, and Alkaloids of Lupinus albus, Lupinus angustifolius and Lupinus luteus Genotypes: Effect of Sowing Dates and Locations 白羽扇豆、角羽扇豆和黄羽扇豆基因型的农艺性状、营养性状和生物碱:播种日期和地点的影响
ACS agricultural science & technology Pub Date : 2024-04-02 DOI: 10.1021/acsagscitech.3c00581
Inês M. Valente*, André Monteiro, Carla Sousa, Carla Miranda, Margarida R. G. Maia, Carlos Castro, Ana R. J. Cabrita, Henrique Trindade and António J. M. Fonseca, 
{"title":"Agronomic, Nutritional Traits, and Alkaloids of Lupinus albus, Lupinus angustifolius and Lupinus luteus Genotypes: Effect of Sowing Dates and Locations","authors":"Inês M. Valente*,&nbsp;André Monteiro,&nbsp;Carla Sousa,&nbsp;Carla Miranda,&nbsp;Margarida R. G. Maia,&nbsp;Carlos Castro,&nbsp;Ana R. J. Cabrita,&nbsp;Henrique Trindade and António J. M. Fonseca,&nbsp;","doi":"10.1021/acsagscitech.3c00581","DOIUrl":"https://doi.org/10.1021/acsagscitech.3c00581","url":null,"abstract":"<p >Lupins (<i>Lupinus</i> spp.) are legumes with high relevance for the sustainability of agricultural systems as they improve the soil quality, namely, through the fixation of atmospheric nitrogen, and have good adaptability to different climates and soil conditions. Besides, they possess high nutritive value, especially due to the high protein content of the seeds. Nevertheless, the plants’ productivity and metabolism can be influenced by the genotype, the edaphoclimatic conditions, and the sowing practices. In this work, the effect of edaphoclimatic conditions and sowing dates on the productivity, nutritional factors, and alkaloids of the seeds of <i>L. albus</i> cv. Estoril, <i>L. angustifolius</i> cv. Tango, and <i>L. luteus</i> cv. Cardiga was evaluated. High variability in the seeds and protein productions, nutritional traits, and alkaloid content related to the species was observed, along with a significant effect of the location. <i>Lupinus albus</i> cv. Estoril showed a good compromise between productivity and low alkaloid content, being an interesting genotype for food and feed use in the conditions of this trial.</p>","PeriodicalId":93846,"journal":{"name":"ACS agricultural science & technology","volume":"4 4","pages":"450–462"},"PeriodicalIF":0.0,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsagscitech.3c00581","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140552152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrating Targeted Metabolomics and Targeted Proteomics to Study the Responses of Wheat Plants to Engineered Nanomaterials 整合靶向代谢组学和靶向蛋白质组学研究小麦植物对工程纳米材料的反应
ACS agricultural science & technology Pub Date : 2024-04-02 DOI: 10.1021/acsagscitech.4c00046
Weiwei Li,  and , Arturo A. Keller*, 
{"title":"Integrating Targeted Metabolomics and Targeted Proteomics to Study the Responses of Wheat Plants to Engineered Nanomaterials","authors":"Weiwei Li,&nbsp; and ,&nbsp;Arturo A. Keller*,&nbsp;","doi":"10.1021/acsagscitech.4c00046","DOIUrl":"https://doi.org/10.1021/acsagscitech.4c00046","url":null,"abstract":"<p >This manuscript presents a multiomics investigation into the metabolic and proteomic responses of wheat to molybdenum (Mo)- and copper (Cu)-based engineered nanomaterials (ENMs) exposure via root and leaf application methods. Wheat plants underwent a four-week growth period with a 16 h photoperiod (light intensity set at 150 μmol·m<sup>–2</sup>·s<sup>–1</sup>), at 22 °C and 60% humidity. Six distinct treatments were applied, including control conditions alongside exposure to Mo- and Cu-based ENMs through both root and leaf routes. The exposure dosage amounted to 6.25 mg of the respective element per plant. An additional treatment with a lower dose (0.6 mg Mo/plant) of Mo ENM exclusively through the root system was introduced upon the detection of phytotoxicity. Utilizing LC–MS/MS analysis, 82 metabolites across various classes and 24 proteins were assessed in different plant tissues (roots, stems, leaves) under diverse treatments. The investigation identified 58 responsive metabolites and 19 responsive proteins for Cu treatments, 71 responsive metabolites, and 24 responsive proteins for Mo treatments, mostly through leaf exposure for Cu and root exposure for Mo. Distinct tissue-specific preferences for metabolite accumulation were revealed, highlighting the prevalence of organic acids and fatty acids in stem or root tissues, while sugars and amino acids were abundant in leaves, mirroring their roles in energy storage and photosynthesis. Joint-pathway analysis was conducted and unveiled 23 perturbed pathways across treatments. Among these, Mo exposure via roots impacted all identified pathways, whereas exposure via leaf affected 15 pathways, underscoring the reliance on exposure route of metabolic and proteomic responses. The coordinated response observed in protein and metabolite concentrations, particularly in amino acids, highlighted a dynamic and interconnected proteomic-to-metabolic-to-proteomic relationship. Furthermore, the contrasting expression patterns observed in glutamate dehydrogenase (upregulation at 1.38 ≤ FC ≤ 1.63 with high Mo dose, and downregulation at 0.13 ≤ FC ≤ 0.54 with low Mo dose) and its consequential impact on glutamine expression (7.67 ≤ FC ≤ 39.60 with high Mo dose and 1.50 ≤ FC ≤ 1.95 with low Mo dose) following Mo root exposure highlighted dose-dependent regulatory trends influencing proteins and metabolites. These findings offer a multidimensional understanding of plant responses to ENMs exposure, guiding agricultural practices and environmental safety protocols while advancing knowledge on nanomaterial impacts on plant biology.</p>","PeriodicalId":93846,"journal":{"name":"ACS agricultural science & technology","volume":"4 4","pages":"507–520"},"PeriodicalIF":0.0,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsagscitech.4c00046","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140552153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An In-House X-ray Fluorescence Spectrometer Development for In Vivo Analysis of Plants 开发用于植物体内分析的内部 X 射线荧光光谱仪
ACS agricultural science & technology Pub Date : 2024-04-01 DOI: 10.1021/acsagscitech.4c00003
Eduardo Santos, Jonatha Demetrio Gozetto, Eduardo de Almeida, Marcos Augusto Stolf Brasil, Nicolas Gustavo da Cruz da Silva, Vinicius Pires Rezende, Higor José Freitas Alves da Silva, Julia Rosatto Brandão, Gabriel Sgarbiero Montanha, José Lavres and Hudson Wallace Pereira de Carvalho*, 
{"title":"An In-House X-ray Fluorescence Spectrometer Development for In Vivo Analysis of Plants","authors":"Eduardo Santos,&nbsp;Jonatha Demetrio Gozetto,&nbsp;Eduardo de Almeida,&nbsp;Marcos Augusto Stolf Brasil,&nbsp;Nicolas Gustavo da Cruz da Silva,&nbsp;Vinicius Pires Rezende,&nbsp;Higor José Freitas Alves da Silva,&nbsp;Julia Rosatto Brandão,&nbsp;Gabriel Sgarbiero Montanha,&nbsp;José Lavres and Hudson Wallace Pereira de Carvalho*,&nbsp;","doi":"10.1021/acsagscitech.4c00003","DOIUrl":"https://doi.org/10.1021/acsagscitech.4c00003","url":null,"abstract":"<p >X-ray fluorescence spectroscopy (XRF) is an analytical technique employed to determine the elemental composition of diverse materials. Due to its nondestructive nature and direct analysis that requires little or no sample preparation, it has been particularly useful for investigating the mineral composition of plants and soil. However, commercially available XRF benchtop equipment often restricts this type of experiment in plant science due to the volume of the sample chamber and the source–detector geometry. To overcome this problem, we developed an XRF setup that prioritizes <i>in vivo</i>-based experiments. The equipment is equipped with a 4 W Ag X-ray tube and a silicon drift detector. The detection limits are comparable to those of commercial instruments and suitable for evaluating plant tissues. Finally, a case study using tomato plants as a model species and rubidium (Rb<sup>+</sup>) and strontium (Sr<sup>2+</sup>) as tracers for potassium (K<sup>+</sup>) and calcium (Ca<sup>2+</sup>), respectively, demonstrated their feasibility for long-term <i>in vivo</i> analysis. Therefore, the present XRF system stands out as a viable and cost-effective tool for assessing the absorption and transport of minerals in plant tissues probed by time-resolved <i>in vivo</i> X-ray spectroscopy.</p>","PeriodicalId":93846,"journal":{"name":"ACS agricultural science & technology","volume":"4 4","pages":"471–477"},"PeriodicalIF":0.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140552146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of DNA Reference Materials of Citrus Huanglongbing Candidatus Liberibacter asiaticus 开发柑橘黄龙病菌的 DNA 参考材料
ACS agricultural science & technology Pub Date : 2024-03-29 DOI: 10.1021/acsagscitech.4c00001
Xiaoyun Chen, Kai Li, Yi Ji, Ziyue Zhang, Xin Qi, Lianming Lu, Xiaofu Wang, Cheng Peng, Min Wang, Junfeng Xu* and Liang Li*, 
{"title":"Development of DNA Reference Materials of Citrus Huanglongbing Candidatus Liberibacter asiaticus","authors":"Xiaoyun Chen,&nbsp;Kai Li,&nbsp;Yi Ji,&nbsp;Ziyue Zhang,&nbsp;Xin Qi,&nbsp;Lianming Lu,&nbsp;Xiaofu Wang,&nbsp;Cheng Peng,&nbsp;Min Wang,&nbsp;Junfeng Xu* and Liang Li*,&nbsp;","doi":"10.1021/acsagscitech.4c00001","DOIUrl":"10.1021/acsagscitech.4c00001","url":null,"abstract":"<p ><i>Citrus</i> Huanglongbing (HLB) is a devastating disease within the <i>Citrus</i> industry. <i>Candidatus</i> Liberibacter asiaticus (<i>C</i>Las) is one of the most prevalent HLB-associated strains that has not been cultured in vitro. To ensure the accuracy and comparability of the molecular diagnostic method for HLB detection, certified reference materials urgently need to be developed for <i>C</i>Las detection. Here, we developed a series of DNA reference materials of <i>C</i>Las using 16S rDNA as the target gene and the SAND gene as the <i>Citrus</i> reference gene. The 16S rDNA gene fragment cloned by the NCBI sequence and <i>Citrus</i> DNA extracted by healthy <i>Citrus</i> leaves are thoroughly mixed for preparation. Droplet digital PCR (ddPCR) was used as an accurate quantification method for 16S rDNA, and the SAND was established and optimized through this study. Nine laboratories collaborated in determining these two parameters, and the homogeneity and stability were adequate. The quantification results demonstrated that the copy number certified values and expanded uncertainty of 16S rDNA and SAND in the high-concentration reference material were (3.86 ± 0.34) × 10<sup>3</sup> and (4.43 ± 0.39) × 10<sup>3</sup> cp/μL, respectively. The copy number certified values and expanded uncertainty of 16S rDNA and SAND in the low-concentration reference material were (3.98 ± 0.36) × 10<sup>2</sup> and (4.34 ± 0.37) × 10<sup>3</sup> cp/μL, respectively. In addition, this certified reference material will provide reliable quality control for detecting <i>C</i>Las.</p>","PeriodicalId":93846,"journal":{"name":"ACS agricultural science & technology","volume":"4 4","pages":"500–506"},"PeriodicalIF":0.0,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140368699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mutual Effects and Uptake of Organic Contaminants and Nanoplastics by Lettuce in Co-Exposure 有机污染物和纳米塑料共同暴露时的相互影响和生菜对它们的吸收
ACS agricultural science & technology Pub Date : 2024-03-26 DOI: 10.1021/acsagscitech.3c00600
Michael Taylor Bryant, Jianhong Ren, Virender K. Sharma and Xingmao Ma*, 
{"title":"Mutual Effects and Uptake of Organic Contaminants and Nanoplastics by Lettuce in Co-Exposure","authors":"Michael Taylor Bryant,&nbsp;Jianhong Ren,&nbsp;Virender K. Sharma and Xingmao Ma*,&nbsp;","doi":"10.1021/acsagscitech.3c00600","DOIUrl":"10.1021/acsagscitech.3c00600","url":null,"abstract":"<p >Organic contaminants, such as pesticides and pharmaceuticals, are commonly found in agricultural systems. With the growing use of plastic products, micro- and nanoplastics (MNPs) are increasingly detected in these agricultural systems, necessitating research into their interactions and joint effects to truly understand their impact. Unfortunately, while there has been a long history of research into the uptake of organic pollutants by plants, similar research with MNPs is only beginning, and studies on their mutual effects and plant uptake are extremely rare. In this study, we examined the effects of three agriculturally relevant organic pollutants with distinctive hydrophobicity as measured by log <i>K</i><sub>OW</sub> (trimethoprim: 0.91, atrazine: 2.61, and ibuprofen: 3.97) and 500 nm polystyrene nanoplastics on their uptake and accumulation by lettuce at two different salinity levels. Our results showed that nanoplastics increased the shoot concentration of ibuprofen by 77.4 and 309% in nonsaline and saline conditions, respectively. Alternatively, organic co-contaminants slightly lowered the PS NPs uptake in lettuce with a more pronounced decrease in saline water. These results underscore the impactful interactions of hydrophobic organic pollutants and increasing MNPs on a dynamic global environment.</p>","PeriodicalId":93846,"journal":{"name":"ACS agricultural science & technology","volume":"4 4","pages":"463–470"},"PeriodicalIF":0.0,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsagscitech.3c00600","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140379556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of Wheat (Triticum aestivum) Response to Mesotrione, a Triketone Herbicide 小麦(Triticum aestivum)对三酮类除草剂 Mesotrione 的反应特征
ACS agricultural science & technology Pub Date : 2024-03-26 DOI: 10.1021/acsagscitech.3c00531
Susee Sudhakar, Sridevi Nakka, Asif Mohammad, Harold N. Trick, P.V. Vara Prasad and Mithila Jugulam*, 
{"title":"Characterization of Wheat (Triticum aestivum) Response to Mesotrione, a Triketone Herbicide","authors":"Susee Sudhakar,&nbsp;Sridevi Nakka,&nbsp;Asif Mohammad,&nbsp;Harold N. Trick,&nbsp;P.V. Vara Prasad and Mithila Jugulam*,&nbsp;","doi":"10.1021/acsagscitech.3c00531","DOIUrl":"10.1021/acsagscitech.3c00531","url":null,"abstract":"<p >Mesotrione is used for weed control in corn and sorghum (pre-emergence) but not in wheat. Corn metabolizes mesotrione via the activity of cytochrome P450 (P450) enzymes. To understand the response of wheat genotypes to mesotrione application, a collection of wheat germplasm including winter, spring genotypes, and mutant lines was used in this research. In response to a 6× (1× = 105 g ai ha<sup>–1</sup>) dose of mesotrione, two winter wheat genotypes (WW-1 and WW-2) were found to be least sensitive compared to the most sensitive genotype (WW-24), mutant lines (J38 and J327), and spring wheat. Further, application of a P450-inhibitor (malathion) before mesotrione treatment enhanced the sensitivity of WW-1 and WW-2 to mesotrione, suggesting a possible role of P450 enzymes in the detoxification of mesotrione. WW1 and WW2 were found to tolerate higher doses of mesotrione and could be potential donors for the transfer of the mesotrione-resistant trait into elite wheat genotypes.</p>","PeriodicalId":93846,"journal":{"name":"ACS agricultural science & technology","volume":"4 4","pages":"432–439"},"PeriodicalIF":0.0,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140380049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Origin of the Urease Inhibition of Metschnikowia pulcherrima Extracts: Comparative Assays with Synthetic Pulcherriminic Acid and Cyclo-dileucine Metschnikowia pulcherrima 提取物抑制尿素酶的起源:与合成 Pulcherriminic Acid 和环-二亮氨酸的比较试验
ACS agricultural science & technology Pub Date : 2024-03-22 DOI: 10.1021/acsagscitech.3c00587
Rosa Aligué, Sergio Atarés, Vicente Dorado, Inés Jimeno, Ignasi Salaet, Tula Yance, Daniel Menao, Eugenio Vispe and José M. Fraile*, 
{"title":"Origin of the Urease Inhibition of Metschnikowia pulcherrima Extracts: Comparative Assays with Synthetic Pulcherriminic Acid and Cyclo-dileucine","authors":"Rosa Aligué,&nbsp;Sergio Atarés,&nbsp;Vicente Dorado,&nbsp;Inés Jimeno,&nbsp;Ignasi Salaet,&nbsp;Tula Yance,&nbsp;Daniel Menao,&nbsp;Eugenio Vispe and José M. Fraile*,&nbsp;","doi":"10.1021/acsagscitech.3c00587","DOIUrl":"10.1021/acsagscitech.3c00587","url":null,"abstract":"<p >The objective of this work was to determine whether pulcherriminic acid was responsible for the urease inhibition activity of the extracts of the yeast <i>Metschnikowia pulcherrima</i>. Pulcherriminic acid was synthesized through a seven-step pathway from <span>l</span>-leucine, starting with the thermal cyclodimerization of <span>l</span>-leucine to the corresponding 2,5-diketopiperazine, followed by oxidation to the 2,5-dichloropyrazine through three consecutive steps without purification of the intermediates, oxidation to the corresponding di-<i>N</i>-oxide, dechlorination by nucleophilic aromatic substitution with benzyloxide, and deprotection with trifluoroacetic acid without isolation of an intermediate. The urease inhibition assay showed 57 ± 2.3% inhibition of the urease activity at 500 ppm of pulcherriminic acid, much lower than the percent inhibition obtain with the extract, in which pulcherriminic acid was not detected. The cyclic dimer of <span>l</span>-leucine was present in the extract, and its inhibitory capacity was also tested, showing a percent inhibition of 56.1 ± 6.11% of the urease activity at 400 ppm, again much lower than the percent inhibition of the extract. This work demonstrates that the inhibitory capacity of the extracts of the yeast <i>M. pulcherrima</i> is not due to either only pulcherriminic acid or only its cyclic dipeptide precursor.</p>","PeriodicalId":93846,"journal":{"name":"ACS agricultural science & technology","volume":"4 4","pages":"405–413"},"PeriodicalIF":0.0,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsagscitech.3c00587","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140220195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Raman Spectroscopy-Based Chemometrics for Pesticide Residue Detection: Current Approaches and Future Challenges 基于拉曼光谱的农药残留检测化学计量学:当前方法与未来挑战
ACS agricultural science & technology Pub Date : 2024-03-22 DOI: 10.1021/acsagscitech.4c00005
Shailja Sharma, Stefan Kolašinac, Xingyi Jiang, Juan Gao, Deeksha Kumari, Shiva Biswas, Ujjal Kumar Sur, Zora Dajić-Stevanović, Qinchun Rao*, Priyankar Raha and Santanu Mukherjee*, 
{"title":"Raman Spectroscopy-Based Chemometrics for Pesticide Residue Detection: Current Approaches and Future Challenges","authors":"Shailja Sharma,&nbsp;Stefan Kolašinac,&nbsp;Xingyi Jiang,&nbsp;Juan Gao,&nbsp;Deeksha Kumari,&nbsp;Shiva Biswas,&nbsp;Ujjal Kumar Sur,&nbsp;Zora Dajić-Stevanović,&nbsp;Qinchun Rao*,&nbsp;Priyankar Raha and Santanu Mukherjee*,&nbsp;","doi":"10.1021/acsagscitech.4c00005","DOIUrl":"10.1021/acsagscitech.4c00005","url":null,"abstract":"<p >Inappropriate pesticide usage leads to unsustainable agricultural practices and deteriorates the quality of fruits and vegetables by introducing potentially hazardous substances. Raman spectroscopy, specifically surface-enhanced Raman spectroscopy (SERS), offers high-sensitivity in situ monitoring of pesticide residues. This review emphasizes the importance of advanced databases and algorithms in interpreting Raman signals. Various statistical models are introduced for spectral analysis, including self-modeling curve resolution, multivariate curve resolution, and self-modeling mixture analysis. Additionally, this study provides comprehensive information on different SERS substrates and shows great potential in the determination of food pesticide residues. However, a multicomponent analysis is needed for pesticide mixtures. The overlapping of the bands needs to be considered due to the complex matrices of biological samples. Artificial neural networks (ANNs) are applied as nonlinear models when the analytes are in a multicomponent mixture. Further research is needed to establish standardized protocols for SERS-based pesticide quantitative detection, including sample preparation and data analysis.</p>","PeriodicalId":93846,"journal":{"name":"ACS agricultural science & technology","volume":"4 4","pages":"389–404"},"PeriodicalIF":0.0,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140217679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emulsion/Cross-Linking Encapsulation of Bacillus in Starch/PVA-Based Microparticles for Agricultural Applications 将芽孢杆菌乳化/交联封装在淀粉/PVA 基微颗粒中,用于农业应用
ACS agricultural science & technology Pub Date : 2024-03-18 DOI: 10.1021/acsagscitech.4c00029
Marina Momesso Lopes, Ludimila Araújo Lodi, Christiane Abreu de Oliveira-Paiva and Cristiane Sanchez Farinas*, 
{"title":"Emulsion/Cross-Linking Encapsulation of Bacillus in Starch/PVA-Based Microparticles for Agricultural Applications","authors":"Marina Momesso Lopes,&nbsp;Ludimila Araújo Lodi,&nbsp;Christiane Abreu de Oliveira-Paiva and Cristiane Sanchez Farinas*,&nbsp;","doi":"10.1021/acsagscitech.4c00029","DOIUrl":"10.1021/acsagscitech.4c00029","url":null,"abstract":"<p >A major drawback of using <i>Bacillus</i> in the promotion of plant growth is the loss of viability under adverse field conditions and during storage. Here, we propose an encapsulation strategy using an emulsion/cross-linking technique with a starch/poly(vinyl alcohol) (PVA)-based matrix for enhancing the cell viability of <i>Bacillus megaterium</i>. The cross-linking agent, trisodium trimetaphosphate (STMP), combined with either starch (ST) or montmorillonite (MMT), allowed the formation of microparticles (ST/PVA-STMP + ST and ST/PVA-STMP + MMT, respectively). Characterization was performed using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). Both microparticles exhibited cell viability higher than 10.75 log<sub>10</sub> CFU g<sup>–1</sup> after the encapsulation procedure. When exposed to heat and fungicide stresses, the microparticles showed a protective role, maintaining cell viability around 9.5 log<sub>10</sub> CFU g<sup>–1</sup>. The encapsulation also proved advantageous in the accelerated shelf-life test (ASLT) assay, meeting the commercialization requirements of different countries. These findings highlight the potential of the encapsulation procedure to expand the use of microbial inoculants for sustainable agriculture.</p>","PeriodicalId":93846,"journal":{"name":"ACS agricultural science & technology","volume":"4 4","pages":"490–499"},"PeriodicalIF":0.0,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140232087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Seed Priming with Cations on Cadmium Accumulation in Wheat Seedings under Cadmium-Contaminated Weakly Alkaline Soil 在镉污染的弱碱性土壤中用阳离子给种子打底对小麦种子镉积累的影响
ACS agricultural science & technology Pub Date : 2024-03-14 DOI: 10.1021/acsagscitech.4c00006
Chenghao Ge, Yixuan Wang, Wenyan Ma, Hafiz Adeel Ahmad, Lijuan Zhao, Cheng Cheng, Hong-Bo Li and Dongmei Zhou*, 
{"title":"Effect of Seed Priming with Cations on Cadmium Accumulation in Wheat Seedings under Cadmium-Contaminated Weakly Alkaline Soil","authors":"Chenghao Ge,&nbsp;Yixuan Wang,&nbsp;Wenyan Ma,&nbsp;Hafiz Adeel Ahmad,&nbsp;Lijuan Zhao,&nbsp;Cheng Cheng,&nbsp;Hong-Bo Li and Dongmei Zhou*,&nbsp;","doi":"10.1021/acsagscitech.4c00006","DOIUrl":"10.1021/acsagscitech.4c00006","url":null,"abstract":"<p >Seed soaking is a viable solution for reducing cadmium (Cd) levels in wheat, given the limited options for economically controlling it. This study aimed to explore the precise mechanisms behind seed priming to reduce Cd levels in wheat seedlings via plant ionomics, transcriptomics, and high-throughput sequencing technologies. The results showed that seed soaking with Mn<sup>2+</sup> (100 μM) significantly improved the growth parameters of wheat seedlings. Seed priming with Ag<sup>+</sup> (1, 2 μM) significantly decreased Cd levels in the roots (32.9 and 40.6%, respectively) and stems (19.4 and 20.3%, respectively), whereas seed priming with Zn<sup>2+</sup> (10 mM) and Mn<sup>2+</sup> (20, 100 μM) significantly decreased Cd levels in the leaves (29.4, 15.6, and 33.5%, respectively) compared to that in the control group. These varied reductions of Cd in wheat seedlings induced by seed soaking were attributed to the restructuring of gene transcription involved in Cd absorption and the recruitment of the genus <i>Rhizopus</i> (plant-beneficial fungi tolerant to Cd) in the rhizosphere soil. It shows that seed soaking could effectively control Cd absorption by wheat in a weakly alkaline soil.</p>","PeriodicalId":93846,"journal":{"name":"ACS agricultural science & technology","volume":"4 4","pages":"478–489"},"PeriodicalIF":0.0,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140243330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信